1	Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza		
2	A(H1N1)pdm09 virus infection by interfering with virus internalization process		
3	Dat Huu Tran ¹ , Ryuichi Sugamata ^{1, 2} , Tomoyasu Hirose ³ , Shoichi Suzuki ^{1,2} , Yoshihiko		
4	Noguchi ³ , Akihiro Sugawara ^{3*} , Fuyu Ito ¹ , Tomoko Yamamoto ¹ , Shoji Kawachi ^{1,2} ,		
5	Kiyoko S. Akagawa ³ , Satoshi Omura ³ , Toshiaki Sunazuka ³ , Naoki Ito ⁴ , Masakazu		
6	Mimaki ⁴ and Kazuo Suzuki ^{1,2†}		
7			
8	¹ Asia International Institute of Infectious Disease Control (ADC), Teikyo University.		
9	Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.		
10			
11	² General Medical Education and Research Center (G-MEC), Teikyo University		
12	Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.		
13			
14	³ Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences,		
15	Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.		
16			
17	*Present address: Graduate School of Pharmaceutical Science, Tohoku University. Aza-		
18	Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan.		
19			
20	⁴ The Pediatric Department, Teikyo Hospital University, Kaga 2-11-1, Itabashi-ku,		
21	Tokyo, 173-8605, Japan.		
22			
23	[†] Corresponding author		
24	Kazuo Suzuki		

- 25 Asia International Institute of Infectious Disease Control (ADC), Teikyo University.
- 26 Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan.
- 27 Telephone: +81-3-3964-8420
- 28 Fax number: +81-3-3964-2580
- 29 E-mail address: suzuki-k@med.teikyo-u.ac.jp

- 30 ABSTRACT
- 31

32 The pandemic influenza 2009 (A(H1N1)pdm09) virus currently causes seasonal and 33 annual epidemic outbreaks. The widespread use of anti-influenza drugs such as 34 neuraminidase and matrix protein 2 (M2) channel inhibitors has resulted in the 35 emergence of drug-resistant influenza viruses. In this study, we aimed to determine the 36 anti-influenza A(H1N1)pdm09 virus activity of azithromycin, a re-positioned macrolide 37 antibiotic with potential as a new anti-influenza candidate, and to elucidate its 38 underlying mechanisms of action. We performed in vitro and in vivo studies to address 39 this. Our in vitro approaches indicated that progeny virus replication was remarkably 40 inhibited by treating viruses with azithromycin before infection; however, azithromycin 41 administration after infection did not affect this process. We next investigated the steps 42 inhibited by azithromycin during virus invasion. Azithromycin did not affect attachment 43 of viruses onto the cell surface, but blocked internalization into host cells during the 44 early phase of infection. We further demonstrated that azithromycin targeted newly 45 budded progeny virus from the host cells and inactivated their endocytic activity. This 46 unique inhibitory mechanism has not been observed for other anti-influenza drugs, 47 indicating the potential activity of azithromycin before and after influenza virus 48 infection. Considering these *in vitro* observations, we administered azithromycin 49 intranasally to mice infected with A(H1N1)pdm09 virus. Single intranasal azithromycin 50 treatment successfully reduced viral load in the lungs and relieved hypothermia, which 51 was induced by infection. Our findings indicate the possibility that azithromycin could 52 be an effective macrolide for the treatment of human influenza.

53

- 54 Keywords: antiviral drug/azithromycin/cytotoxicity/intranasal administration/15-
- 55 membered macrolide/pandemic influenza A(H1N1) virus/virus internalization

INTRODUCTION

58	Influenza A viruses cause annual epidemics that peak during winter season, frequently
59	leading to an increase in hospitalizations and deaths, mainly among the elderly and
60	infants [1]. Historically, the occurrence of an influenza outbreak has often led to huge
61	casualties. The Spanish influenza A(H1N1) of 1918 resulted in a worldwide pandemic
62	that caused massive devastation, with an estimated 20-50 million deaths [2]. In 1997, a
63	highly pathogenic avian influenza A(H5N1) virus was first recognized as capable of
64	infecting humans; sporadic human infections with this virus have resulted in a fatality
65	rate greater than 50% due to severe respiratory disease [3].
66	A novel infectious virus influenza A(H1N1)pdm09 virus triggered the most recent
67	global pandemic decades ago [4]. Further, severe respiratory diseases were evoked by
68	the pandemic virus in several cases [5]. Influenza-induced severe respiratory disease
69	leads to a high fatality rate owing to respiratory disorders and failure. Extracorporeal
70	membrane oxygenation for respiratory failure induced by A(H1N1)pdm09 virus has
71	shown limited success in Japan (35.7% survival rate) [6]. Thus, the development and/or
72	repositioning of anti-influenza agents that can reduce the viral load are necessary.
73	Clinically-used neuraminidase inhibitors are beneficial for human influenza; they
74	inhibit progeny virus yield during the acute phase of infection [7,8]. However, a marked
75	increase in drug-resistant A(H1N1) viruses was observed, and they are currently an
76	emerging problem worldwide [9,10,11]. Recently, new antiviral agents have been
77	approved for the treatment of influenza in Japan. Favipiravir inactivates RNA-
78	dependent RNA polymerases of broad-spectrum RNA viruses including influenza

79	viruses [12]. Nevertheless, this RNA polymerase inhibitor induces some toxicities,
80	limiting its clinical use. Xofluza ^{TM} , a cap-dependent endonuclease inhibitor that has been
81	recently approved for influenza, blocks the initiation of virus mRNA synthesis in host
82	cells [13]; however, viruses resistant to Xofluza [™] have emerged [14]. Thus, strategies to
83	prepare for and protect against the next outbreak of influenza, as well as current
84	seasonal influenza, are essential. The development of novel anti-influenza drugs from
85	the basics is a time-consuming process. Therefore, repositioning different types of
86	licensed drugs is one of the most validated strategies to identify new anti-influenza
87	drugs within a short period.
88	Accordingly, one antibiotic, clarithromycin (CAM), a 14-membered macrolide, is
89	effective against influenza virus infection. Moreover, the anti-influenza virus activities
90	of CAM have been supported by both in vivo and in vitro studies [15,16]. Previously,
91	our group reported that a 16-membered macrolide, leucomycin A3 (LM-A3, also called
92	as josamycin), shows noticeable anti-influenza A virus activities based on both in vivo
93	and in vitro studies [17]. The synthesized 12-membered EM900 macrolide, in which
94	anti-bacterial activity was eliminated, also resulted in a survival advantage in mice
95	infected with influenza A(H1N1) virus [17]. These reports indicate that different
96	membered ring structures of macrolides show diverse anti-virus activity. The 15-
97	membered macrolides such as azithromycin (AZM) are considered promising anti-
98	influenza agents. Prior to proceeding with our present study, we aimed to identify
99	macrolide candidates from different membered ring structure macrolides including 12-,
100	14-, 15-, and 16-membered variants that exert inhibitory effects on the activities of
101	influenza A(H1N1)pdm09 virus. We found that AZM shows anti-A(H1N1)pdm09 virus
102	activity by in vitro screening.

103	In this study, via in vitro approaches, we demonstrated that AZM exerts anti-
104	influenza A(H1N1)pdm09 virus activity via a mechanism different from that associated
105	with other currently available anti-influenza drugs including macrolides. Based on this
106	underlying antiviral mechanism, we further elucidated that AZM can ameliorate
107	pathological status in vivo. Our findings could broaden the treatment options for
108	influenza epidemics and suggest an alternative strategy to develop and design anti-
109	influenza therapeutics.

110	MATERIALS AND METHODS
111	
112	Macrolide compound
113	
114	Azithromycin dehydrate for all experiments was purchased from Tokyo Chemical
115	Industry Co., Ltd. (TCI, Japan).
116	
117	Cells
118	
119	Human A549 and MDCK (Madin-Darby canine kidney) cells were grown and
120	maintained in supplemented Dulbecco's modified Eagle medium (DMEM) or minimum
121	essential medium (MEM) (Sigma Life Science, United Kingdom) with 10% fetal bovine
122	serum (FBS), 2 mM L-glutamine, 100 μ g ml ⁻¹ streptomycin, and 100 u ml ⁻¹ penicillin.
123	
124	Virus
125	
126	Human influenza A(H1N1)pdm09 (A/California/7/2009 (H1N1)) virus was supplied
127	from A-CLIP institute under the guidelines of Chiba university (Chiba, Japan). MDCK
128	cells were infected with the viruses and cultured for 24 h. Next, virus titers in the
129	culture medium were determined using a viral plaque assay, described subsequently.
130	To prepare mouse-adapted influenza A(H1N1)pdm09 virus, 8-week-old female
131	mice were anesthetized with isoflurane, and were intranasally infected with 1×10^4
132	plaque forming units (pfu) of the human influenza A(H1N1)pdm09 virus. After 4 days,
133	lung tissues were homogenized in 1.5 ml PBS. After centrifuging at 8000 rpm for 5

134	min, the supernatant was collected and diluted three times with RPMI 1640 medium
135	supplemented with 2% FBS. A 30- μ l aliquot was used for the second inoculum, and the
136	previously described steps were repeated 10 times. The last passaged virus was used for
137	the following animal experiments.
138	
139	Different azithromycin treatments against virus infection in host cells
140	
141	AZM was dissolved in EtOH and adjusted to achieve a final concentration of 0.2%
142	EtOH in DMEM. A confluent monolayer of A549 cells was infected with
143	A(H1N1)pdm09 virus at a multiplicity of infection (M.O.I.) of 1 under four different
144	treatment conditions with 200 μM of AZM as follows (i) post-infection treatment: A549
145	cells were infected with the viruses at 35 °C for 1 h. After infection, the cells were
146	washed with PBS and cultured in 2 ml supplemented DMEM with or without AZM at
147	37 °C for 48 h. (ii) Pretreatment of cells: the host cells were pretreated with 300 μl non-
148	supplemented DMEM with or without AZM at 37 °C for 1 h. After removal of the
149	medium, the cells were washed with PBS and infected with the viruses at 35 °C for 1 h.
150	Subsequently, the cells were washed with PBS and cultured with 2 ml AZM-free
151	supplemented DMEM at 37 °C for 48 h. (iii) Pretreatment of viruses: the viruses were
152	pretreated with 300 μl non-supplemented DMEM with or without AZM for 1 h at 37 °C.
153	After the treatment, A549 cells were infected with the viruses for 1 h at 35°C. Then, the
154	cells were washed with PBS and cultured in 2 ml AZM-free supplemented DMEM at
155	37°C for 48 h. (iv) Treatment at the time of infection: viruses were premixed with 300
156	μ l non-supplemented DMEM in the absence or presence of AZM, and A549 cells were
157	immediately infected for 1 h at 35 °C. After infection, the cells were washed with PBS

158	and cultured in 2 ml AZM-free supplemented DMEM at 37 °C for 48 h. Virus titers in
159	the culture medium and virus matrix protein 1 (M1) gene expression levels in the cells
160	were examined by virus plaque assays and qPCR analysis, respectively.
161	
162	Viral plaque assay
163	
164	A confluent monolayer of MDCK cells was infected with serial dilutions of the culture
165	medium collected from each experiment at 35 °C for 1 h. After removal of the
166	inoculum, the cells were washed with PBS and overlaid with Eagle's minimal essential
167	medium (EMEM) containing 0.8% agarose, 40 mM HEPES, 0.15% sodium
168	bicarbonate, 2 mM L-glutamine, 2 μ g ml ⁻¹ trypsin, and 50 μ g ml ⁻¹ gentamicin. After
169	incubation at 37 °C for 48 h, the cells were fixed with 10% formaldehyde, followed by
170	staining with 0.1% crystal violet solution to count viral plaques.
171	
172	Half-maximal inhibitory concentration
173	
174	The half-maximal inhibitory concentration (IC ₅₀) of AZM, with respect to viral
175	proliferation, was evaluated by the procedure (iv; at the time of infection) mentioned in
176	the "Different azithromycin treatments against virus infection in host cells" section. The
177	viruses were premixed with 300 μ l non-supplemented DMEM containing various
178	concentrations of AZM (up to 600 μ M), and the host A549 cells were immediately
179	infected for 1 h at 35 °C. Then, the cells were washed with PBS and cultured in AZM-
180	free supplemented DMEM for 48 h at 37 °C. Progeny virus titers in the culture medium
181	were examined by virus plaque assays to calculate IC_{50} values.

182

- 183 Cytotoxicity assay
- 184

185	The cytotoxicity	y of AZM toward.	A549 cells was	determined b	y MTT [3-(4	4,5-
-----	------------------	------------------	----------------	--------------	-------------	------

- 186 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays based on manufacturer's
- 187 instructions for the Cell Proliferation Kit I (Roche, Germany). A549 cells were
- incubated in 300 µl non-supplemented DMEM containing various concentrations of
- 189 AZM (up to 600 μ M) in the presence or absence of viruses (1 M.O.I.) for 1 h at 35 °C.
- 190 After treatment, the cells were washed with PBS and cultured in AZM-free
- 191 supplemented DMEM for 48 h at 37 °C. The culture medium was removed and 1 ml
- 192 DMEM containing MTT labeling reagent (0.5 mg ml⁻¹) was supplied and incubated for
- 193 3 h. Subsequently, 1 ml solubilization solution was added and incubated for 14 h at 37
- 194 °C. The solubilized formazan products were spectrophotometrically measured using an
- 195 iMark microplate reader (BioRAD, USA).
- 196

197 Examination of inhibitory effects of AZM on budded progeny viruses

198

199 A549 cells were first infected with A(H1N1)pdm09 virus (1 M.O.I.) at 35 °C for 1 h and 200 cultured with or without AZM (200 μ M). After 10 h of culturing, virus gene expression 201 in the cells and titers of budded progeny viruses in the medium were measured by qPCR 202 and plaque assays, respectively. The newly prepared A549 cells were infected with the 203 collected culture medium containing progeny viruses with or without AZM at 35 °C for 204 1 h. After infection, the cells were cultured in AZM-free supplemented medium at 37 °C for 7 h and were subjected to M1 expression analysis.

206

207 Hemagglutination inhibition assay

- 208
- 209 Fresh 1% red blood cells (RBCs) in PBS solution were prepared from chicken whole
- 210 blood (Biotest company, Japan). Twenty-five microliters of serially-diluted
- 211 A(H1N1)pdm09 virus solution [640 hemagglutination units (HAU) ml⁻¹] was incubated
- with an equal volume of PBS or AZM/EtOH in PBS solution for 30 min at room
- temperature (20–22 °C). Next, 50 μl of 1% RBC solution was added, followed by
- 214 incubation for 20 min at room temperature. Hemagglutination was observed to estimate
- 215 whether AZM inhibits the binding of virus hemagglutinin (HA) and sialic acid (SA) on
- 216 **RBCs**.
- 217

218 Inhibitory assay to determine the effect of AZM on virus attachment or

- 219 internalization during infection
- 220

```
Attachment stage assay: A549 cells were incubated with a mixture of 200 \,\mu\text{M} AZM and
```

viruses (1 M.O.I.) at 4 °C for 1 h. After removal of the mixture, the host cells were

223 washed with cold PBS, and total RNA was extracted. Internalization stage assay: A549

- 224 cells were incubated with viruses (1 M.O.I.) at 4 °C for 1 h. The cells were washed with
- 225 warm PBS and cultured with medium containing 200 μM AZM at 37 °C for 1 h. After
- incubation, the cells were washed with PBS and treated with proteinase K (Wako,
- Japan) in PBS at a final concentration of 100 μ g ml⁻¹ at 37 °C for 5 min to remove
- 228 viruses remaining at the cell surface. The extracted total RNA was synthesized into

229	cDNA, and the expression levels of virus M1 and nucleoprotein (NP) were analyzed by	
230	qPCR.	
231		
232	Quantitative real-time PCR	
233		
234	One microgram of total RNA was reverse-transcribed into cDNA in a 20-µl reaction	
235	mixture using ReverTra Ace qPCR RT Master Mix with gDNA remover (Toyobo,	
236	Japan). The prepared cDNA was used for virus gene expression analyses by qPCR with	
237	PowerUp SYBR green PCR Master Mix (ThermoFisher Scientific, USA). PCR was	
238	performed using a specific primer set (Supplementary Table 1) according to the	
239	following cycles: 50 °C for 2 min, 95 °C for 2 min, followed by 40 cycles at 95 °C for	
240	15 s and 60 °C for 1 min.	
241		
242	Mice	
243		
244	The animal protocols of influenza virus infection were approved by the Institutional	
245	Animal Use and Care Committee and conformed to the guidelines of Teikyo University	
246	(AUP No. 16-021). Wild-type 8-week-old BALB/c female mice were purchased from	
247	SLC (Shizuoka, Japan) and housed in pathogen-free conditions.	
248		
249	Animal infection experiment and administration of AZM	
250		

251 AZM was dissolved in EtOH and mixed with PBS (pH 7.0) to prepare a solution 252 containing 200 µg AZM in total 50-µl volume. The final concentration of EtOH in the 253 mixture was adjusted within 3%. Anesthetized mice were intranasally infected with 300 pfu of mouse-adapted influenza A(H1N1)pdm09 virus. Six hours post-infection, whole 254 255 lung tissues from one group were sampled as reference control (without treatment). 256 Other groups were administered the mixture solution intranasally with or without AZM (10 mg kg^{-1}) twice per day every 12 h under isoflurane anesthesia for 3 days post-257 258 infection. The rectal temperature and body weight of mice were monitored. At different 259 time points, whole lung tissues were collected from the treated mice and homogenized 260 in RNAiso plus solution using a beads cell disrupter (Micro SmashTM MS-100, Tomy, 261 Japan). The cDNA pools were synthesized from the extracted total RNA, and viral M1 262 and NP gene expression levels were investigated by qPCR. 263 264 **Statistical analyses** 265

All experimental data were statistically analyzed by the Mann-Whitney U (MWU) test,

267 *one-way* or *two-way* ANOVA using Graph Prism 7.02.

269

AZM inhibits influenza A(H1N1)pdm09 virus activity by directly interacting with the viruses

272

273 To investigate the AZM treatment condition that led to the most effective antiviral 274 activity, we performed the following experiments based on four different conditions: 275 post-infection treatment (i), pretreatment of cells (ii), pretreatment of viruses (iii), and 276 treatment at the time of infection (iv) using AZM. AZM administration after infection 277 resulted in a normal progeny virus titer in the culture medium (Fig. 1a) and typical viral 278 M1 gene expression levels in the host cells (Fig. 1b), as compared to those in the 279 controls. Pretreating viruses with AZM for 1 h before infection resulted in a remarkable 280 reduction in progeny virus production and M1 expression. AZM administration at the 281 time of infection also significantly reduced progeny virus titers to similar levels 282 observed with the pretreatment of viruses group (Fig. 1). In contrast, the pretreatment of 283 host A549 cells with AZM for 1 h did not result in a striking difference in both progeny 284 production and M1 expression levels compared to those in the control group (Fig. 1). 285 The administration of clarithromycin (CAM) under these experimental conditions did 286 not reduce progeny virus production (Suppl. Fig. 1). These observations indicated that 287 AZM interacts with A(H1N1)pdm09 viruses to inhibit virus activity in the early phases 288 of infection. Both 1 h pretreatment and treatment at the time of infection with AZM 289 showed similar inhibitory effects on progeny production.

290

291 AZM exerts no cytotoxicity towards host cells in the IC₅₀ range 292 293 We next determined the IC_{50} value of AZM on progeny virus proliferation (Fig. 2). 294 AZM decreased progeny viruses released into the culture medium in a dose-dependent 295 manner, and the mean IC₅₀ value was approximately $68 \mu M$ (Fig. 2a). The expression 296 status of viral M1 gene in A549 cells correlated with the trend in virus titers (Suppl. Fig. 297 2). 298 To determine the concentration at which AZM exhibits toxicity towards host A549 299 cells, MTT assays were performed with a broad range of AZM concentrations (Fig. 2b). 300 Under non-infectious conditions, significant cytotoxicity was not detected by co-301 culturing with less than 200 µM AZM (Fig. 2b, upper panel). Similarly, no cytotoxic 302 effect on A549 cells was observed in the presence of AZM at less than 600 µM under 303 infectious conditions (Fig. 2b, lower panel). These data indicate that AZM does not 304 influence host cell viability within the IC₅₀ range in both non-infectious and infectious 305 conditions. 306 307 AZM does not influence attachment status but affects viral internalization 308 309 To explore the mechanisms underlying the antiviral activity of AZM, we first 310 determined whether AZM interferes with the binding interaction between HA of virus 311 and SA on RBCs. As seen in Figure 3, hemagglutination was observed up to a virus 312 dilution of 1/16; however, no marked interruption of hemagglutination by AZM was

detected within this dilution range, indicating that AZM did not affect the binding
activity between virus HA and its SA receptor on the cells.

315 We further investigated the inhibitory mechanism associated with the effects of 316 AZM on virus attachment and internalization based on the expression profiles of virus 317 genes in the host cells (Fig. 4.). Treating viruses with AZM at the time of infection did 318 not lead to changes in M1 and NP expression, which was determined from the attached 319 viruses on the cell surface (Fig. 4a). In contrast, AZM administration after virus 320 attachment, followed by the removal of orphan viruses using protein-K, significantly 321 reduced both M1 and NP expression in host cells (Fig. 4b). These observations indicate 322 that AZM does not influence binding ability, but interferes with the internalization

323 process during the early phase of virus invasion.

324

325 AZM targets newly-synthesized progeny viruses

326

327 Based on the inhibitory effect of AZM on the internalization of parental viruses during 328 infection, we hypothesized that AZM could interrupt a repeat cycle of infection and 329 progeny virus propagation. To prove this hypothesis, we monitored virus quantities at 330 each point during the initial infection of parental viruses and the second infection of 331 progeny viruses in the presence of AZM (Fig. 5). First, host A549 cells were infected 332 with A(H1N1)pdm09 viruses; then, the cells were co-cultured with or without AZM for 333 10 h. At this time point, progeny virus titers in the culture medium or viral M1 334 expression levels in the host cells were comparable in the presence and absence of AZM 335 (Fig. 5a and 5b). This result was consistent with the observations shown in Figure 1. 336 Subsequently, we infected newly-prepared A549 cells with the collected culture

337	supernatant, which contained budded progeny viruses, in the presence or absence of	
338	AZM. The infected A549 cells were then cultured in AZM-free medium for 7 h. At this	
339	point, M1 expression levels were remarkably reduced in A549 cells upon exposure to	
340	medium containing progeny viruses and AZM (Fig. 5c). These observations confirm ou	
341	theory that AZM can prevent virus internalization when extracellular viruses invade	
342	host cells.	
343		
344	Single administration of AZM relieves viral load in infected mice	
345		
346	Considering our in vitro observations, we next perform intranasal administration of	

347 AZM for *in vivo* challenge (Fig. 6a). As shown in Figure 6b, AZM administration

tended to reduce viral M1 and NP expression in the lung tissues 3 days after infection.

349 The maximal inhibition of viral expression was observed 2 days post-infection, when

350 the viruses propagated dramatically (Fig. 6b). Further, AZM treatment alleviated the

decrease in body temperature 3 days after infection (Fig. 6c), but had no effect on body

352 weight in infected mice at any day (Fig. 6d). Our *in vivo* challenge showed that a single

353 treatment with AZM via the intranasal route could suppress the virus load in the lungs,

thereby preventing hypothermia during A(H1N1)pdm09 virus infection.

355 **DISCUSSION**

356

357 In this study, we aimed to determine the anti-influenza A(H1N1)pdm09 virus activity of 358 AZM and to elucidate the underlying mechanism. We found that AZM exerts anti-359 influenza A(H1N1)pdm09 virus activity based on both *in vivo* and *in vitro* studies. The 360 administration of AZM after infection did not inhibit progeny virus replication, whereas 361 AZM treatment before infection remarkably reduced progeny virus production after 48 362 h of culture. We also showed that existing AZM in the culture medium interfered with 363 the infection activity of budded progeny viruses. These in vitro observations indicate 364 that AZM inhibits influenza A virus activity, and its antiviral activity is effective when 365 the viruses are located outside host cells during a repeat cycle of propagation. AZM 366 administration had no effect on progeny titer after infection, implying that it cannot 367 block progeny virus yield. AZM is therefore capable of interfering with virus entry into 368 host cells during the early phase of the infection process. 369 The infection of influenza A viruses is generally established through the binding of 370 viral HA and SA on the cell surface [18]. In our study, AZM did not affect this binding 371 on the host cell surface (Fig. 3 and Fig. 4a). In contrast, AZM significantly affected 372 virus internalization, which is the second stage of virus invasion (Fig. 4b). The 373 internalization of influenza A viruses is accomplished by endocytosis. Virus 374 ribonucleoproteins (vRNPs) are de-enveloped, which depends on the acidified 375 environment of endosomes and released into the cytoplasm, which is followed by the initiation of component multiplication for progeny virus replication [19]. Several 376 377 macrolides such as CAM and bafilomycin A1 (Baf-A1) attenuate the propagation of 378 influenza A/PR/8/34(H1N1) and A(H3N2) viruses, respectively, by impairing the

formation of acidic endosomes in host cells [16,20]. The endocytosis of influenza A
viruses is mainly mediated by clathrin-associated molecules [21], which are host-cell
factors. Pretreating host A549 cells with AZM before infection did not inhibit progeny
virus production in our study. This indicates that AZM does not affect host factors
including clathrin-associated molecules to induce antiviral effects.

384 In contrast, treating viruses with AZM before infection decreased the quantity of 385 internalized viruses in host cells (Fig. 5c). It takes more than 30 min for vRNPs to be 386 uncoated and released into the cytoplasm [22]. In our internalization assay, the treated 387 host cells were promptly harvested to avoid amplification of virus nucleotide copies in 388 the cells. Further, blockage of vRNP uncoating by AZM is unlikely, because the total 389 quantity of virus RNA is encased inside cells regardless of whether endocytosed viruses 390 undergo uncoating. Based on these in vitro observations, we suggest that AZM-391 pretreated viruses attach normally to the cell surface; however, more than half of the 392 viruses could not internalize into the cells and remained at the cell surface. Our data 393 indicate the possibility that AZM acts directly on the influenza virus, and that the 394 treated viruses cannot internalize into host cells. Moreover, AZM had no effect on 395 binding between SA and HA; nonetheless, it interfered with virus internalization. This 396 suggests that alternative receptor(s) containing are involved in virus endocytosis. The 397 entry of influenza A viruses into cells is mediated by interactions with lectin receptors, 398 independent of the SA–HA interaction pathway [23]. It is possible that AZM hampers 399 the interaction between the virus and such receptor(s) to prevent internalization. 400 Pretreating neither A(H1N1)pdm09 viruses nor host cells with CAM inhibited 401 progeny virus production (Suppl. Fig. 1), whereas AZM interrupted internalization in 402 this study. CAM inhibits A(H1N1) PR8 virus activity [15,16], but it did not affect

403 A(H1N1)pdm09 virus proliferation. These observations indicate the possibility that the
404 unique anti-influenza virus mechanism of AZM is fundamentally different from that of
405 CAM.

406 One in vivo study reported that the intraperitoneal injection of AZM (100 mg/kg, 407 one dose) at 48 h post-infection could reduce virus titers in the lung until death [24]. In 408 that study, the additional oral administration of oseltamivir was more efficient in 409 suppressing the virus titer, leading to a survival advantage. In contrast, we selected the 410 intranasal administration of AZM from the initial phase of infection (10 mg/kg/day), 411 and this route significantly reduced viral loads in the lungs, in addition to providing 412 relief from infection-induced hypothermia. Thus, the inhalation treatment of AZM 413 concomitant with the oral administration of oseltamivir might offer better clinical 414 benefits as a combination therapy for influenza virus infection. 415 A(H1N1)pdm09 virus is currently a seasonal influenza that causes annual epidemic 416 outbreaks. As a licensed anti-influenza drug, laninamivir is clinically administered via 417 the inhalation route to humans. AZM is also a safe and licensed drug, and accordingly, 418 it showed low cytotoxicity under both non-infectious and infectious conditions in this 419 study. The therapeutic benefits of intranasal AZM in mice infected with 420 A(H1N1)pdm09 virus provide a new therapeutic perspective to deal with seasonal 421 influenza epidemics. 422 Influenza A viruses that are resistant to neuraminidase and M2 channel inhibitors 423 such as oseltamivir and amantadine have emerged recently in Japan [25,26]. Therefore, 424 the continual development and/or re-positioning of anti-influenza virus agents is of

importance to public health. In this study, we show the potential of AZM to exert

426 antiviral activities both before and after influenza A virus infection, suggesting that it

427	has potential for prophylactic administration. As AZM is an antibiotic that possesses
428	anti-bacterial activity, its continuous use poses a risk for the emergence of anti-bacterial
429	resistance. However, no casualties were observed in patients who progressed to
430	respiratory tract complications caused by secondary bacterial infection in clinical
431	practice [27]. Thus, AZM could be prescribed to prevent both primary infection by
432	influenza A virus and secondary infection by bacteria. Therefore, the anti-bacterial
433	activity of AZM is not necessarily associated with shortcomings for its clinical use
434	against human influenza.
435	Owing to their unique chemical architecture, macrolides exert anti-bacterial and
436	antiviral activities independently. The erythromycin-based derivative EM900 inhibits
437	several viruses including influenza A virus [17,28]. Some AZM-derivatives
438	synthesized by our group showed anti-AH1N1pdm09 virus activity with less potent
439	anti-bacterial activity (data not shown). Thus, the different components of the chemical
440	architecture responsible for anti-influenza A virus activity should be investigated to
441	facilitate the development of optimal anti-influenza drugs based on macrolides.
442	Further in vitro investigations, for example, to determine whether AZM is directly
443	involved in particular region(s) on A(H1N1)pdm09 virus for inactivation, are necessary
444	to understand the detailed anti-influenza virus mechanism of AZM. In addition, to
445	ascertain the consequences of intranasal AZM treatment in vivo, we must perform
446	follow-up experiments such as assessing survival in lethally-infected mice. However,
447	the findings of this study could form the basis of the re-positioning of this anti-influenza
448	drug for widespread clinical treatment options for human influenza.
449	

450 CONFLICT OF INTEREST

451

- 452 The authors declare no conflict of interest.
- 453

454 **ACKNOWLEDGEMENTS**

455

456 This study was supported by Japan Agency for Medical Research and Development

457 (AMED) under Grant number: 16jm0210032h0004 and Japan Science and Technology

458 Agency (JST). We appreciate Dr. Yosuke Kameoka at the A-CLIP institute for

459 providing the A(H1N1)pdm09 virus strain. We would also like to thank Editage

460 (www.editage.jp) for English language editing.

461

462 Supplementary information is available at the Journal of Antibiotics website.

REFERENCES 463

464		
465	1.	Glezen WP, Taber LH, Frank AL, Gruber WC, Piedra PA. Influenza virus
466		infections in infants. Pediatr Infect Dis J. 1997;16:1065-8.
467		
468	2.	Tumpey TM, et al. Characterization of the reconstructed 1918 Spanish influenza
469		pandemic virus. Science. 2005;310:77-80.
470		
471	3.	Tran TH, et al. Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J
472		Med. 2004;350:1179–88.
473		
474	4.	World Health Organization. Weekly Update Pandemic (H1N1) 2009. 6 August
475		2010. DOI: https://www.who.int/csr/don/2010_08_06/en/.
476		
477	5.	Mauad T, et al. Lung pathology in fatal Novel Human Influenza A (H1N1)
478		infection. Am J Respir Cit Care Med. 2009;181:72-9.
479		
480	6.	Takeda S. Extracorporeal membrane oxygenation for 2009 influenza A(H1N1)
481		severe respiratory failure in Japan. J Anesth. 2012;26:650-7.
482		
483	7.	Hayden FG, et al. Efficacy and safety of the neuraminidase inhibitor zanamivir
484		in the treatment of influenza virus infections. GG167 Influenza Study Group. N
485		Engl J Med. 1997;337:874–80.
486		

487	8.	Yamashita M. Laninamivir and its prodrug, CS-8958: long-acting neuraminidase
488		inhibitors for the treatment of influenza. Antivir Chem Chemother. 2010;21:71–
489		84.
490		
491	9.	Stephenson I, et al. Neuraminidase inhibitor resistance after oseltamivir
492		treatment of acute influenza A and B in children. Clin Infect Dis. 2009;48:389-
493		96.
494		
495	10.	Hurt AC, Holien JK, Parker M, Kelso A, Barr IG. Zanamivir-resistant influenza
496		viruses with a novel neuraminidase mutation. J Virology. 2009;83:10366-73.
497		
498	11.	Leang SK, et al. Peramivir and laninamivir susceptibility of circulating influenza
499		A and B viruses. Influenza Other Respir Viruses. 2014;8:135–9.
500		
501	12.	Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad-spectrum
502		inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B. 2017;93:449-63.
503		
504	13.	Kimberly E. Ng, PharmD. Xofluza (Baloxavir Marboxil) for the treatment of
505		acute uncomplicated influenza. P & T Community. 2019;44:9–11.
506		
507	14.	Takashita E, et al. Detection of influenza A (H3N2) viruses exhibiting reduced
508		susceptibility to the novel cap-dependent endonuclease inhibitor baloxavir in
509		Japan, December 2018. Euro Surveill. 2019;24:1800698.

511	15. Tsurita M, et al. Early augmentation of interleukin (IL)-12 level in the airway of
512	mice administrated orally with clarithromycin or intranasally with IL-12 results
513	in alleviation of influenza infection. J Pharmacol Exp Ther. 2001;298:362-8.
514 515	
516	16. Yamaya M, et al. Clarithromycin inhibits type A seasonal influenza virus
517	infection in human airway epithelial cells. J Pharmacol Exp Ther. 2010;333:81-
518	90.
519	
520	17. Sugamata R, et al. Leucomycin A ₃ , a 16-membered macrolide antibiotic, inhibits
521	influenza A virus infection and disease progression. J Antibiot. 2014;67:213-22.
522	
523	18. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the
524	influenza hemagglutinin. Annu Rev Biochem. 2000;69:531–69.
525	
526	19. Palese P, Shaw ML. Orthomyxoviridae: the viruses and their replication. In:
527	Fields Virology. 5th ed. Lippincott Williams & Wilkins, Philadelphia; 2007. p.
528	1647–89.
529	
530	20. Yeganeh B, et al. Suppression of influenza A virus replication in human lung
531	epithelial cells by noncytotoxic concentrations bafilomycin A1. Am J Physiol
532	Lung Cell Mol Physiol. 2015;300:L270–86.
533	

534	21. Le Roy C, Wrana JL. Clathrin- and non- clathrin-mediated endocytosis
535	regulation of cell signaling. Nat Rev Mol Cell Biol. 2005;6:112–26.
536	
537	22. Qin J, et al. Real-time dissection of dynamic uncoating of individual influenza
538	viruses. Proc Natl Acad Sci USA. 2019;116:2577-82.
539	
540	23. Londrigan SL, et al. N-linked glycosylation facilitates sialic acid-independent
541	attachment and entry of influenza A viruses into cells expressing DC-SIGN or
542	L-SIGN. J Virol. 2011;85:2990–3000.
543	
544	24. Fage C, Pizzorno A, Rheaume C, Abed Y, Boivin G. The combination of
545	oseltamivir with azithromycin does not show additional benefits over
546	oseltamivir monotherapy in mice infected with influenza A(H1N1)pdm2009
547	virus. J Med Virol. 2017;89:2239–43.
548	
549	25. Matsuzaki Y, et al. A two-year survey of the oseltamivir-resistant influenza
550	A(H1N1) virus in Yamagata, Japan and the clinical effectiveness of oseltamivir
551	and zanamivir. Virol J. 2010; 7:53.
552	
553	26. Dong G, et al. Adamatane-resistant influenza A viruses in the world (1902-
554	2013): Frequency and distribution of M2 gene mutations. PloS One.
555	2015;10:e0119115.
556	

557	27. Louie J, et al. Factors associated with death or hospitalization due to pandemic
558	2009 influenza A(H1N1) infection in California. JAMA. 2009;302:1896–902.
559	
560	28. Kalonji L, et al. The non-antibiotic macrolide EM900 inhibits rhinovirus
561	infection and cytokine production in human airway epithelial cells. Physiol Rep.
562	2015;3:e12557.

a

Attachment

Supplementary Table 1

Supplementary Table 1. Oligonucleotide primers used for qPCR analysis

Name	Oligonucleotide sequence
09pdm virus M1-F	5'-CAGGCCCCCTCAAAGCCGA-3'
09pdm virus M1-R	5'-GGGCACGGTGAGCGTGAACA-3'
09pdm virus NP-F	5'-CTTGTGTGTATGGGCTTGCAGTA-3'
09pdm virus NP-R	5'-GAAAGGGAAGGGTACTCACTGGT-3'
Mouse GAPDH-F	5'-GCTCTCTGCTCCTCCTGTTC-3'
Mouse GAPDH-R	5'-ACGACCAAATCCGTTGACTC-3'
Human GAPDH-F	5'-GCTCTCTGCTCCTCCTGTTC-3'
Human GAPDH-R	5'-ACGACCAAATCCGTTGACTC-3'

Supplementary Figure 1

Supplementary Figure 1. Comparison of anti-A(H1N1)pdm09 virus activity between AZM or CAM. The antiviral activity of each macrolide was evaluated under 4 different conditions (1 M.O.I.) at 68 μ M, which is the IC₅₀ for AZM. Data are shown as means ±S.E. from 6 individual data. **p*<0.05, ***p*<0.01; n.s., no significant differences.

Supplementary Figure 2

Supplementary Figure 2. The IC₅₀ of M1 expression level. A549 cells infected with viruses mixed with AZM were cultured in AZM-free medium for 48 h. The IC₅₀ was calculated based on M1 expression level with 0 μ M of AZM. The graph shows means ±S.E. from 6 individual data.

1 Titles and legends to figures

2	Figure 1. Antiviral activity of azithromycin (AZM) on A(H1N1)pdm09 virus
3	infection. Antiviral activity of AZM was evaluated under four different conditions (i)
4	Post-infection treatment: A549 cells were infected with the viruses before culturing with
5	or without AZM. (ii) Pretreatment of cells: A549 cells were pretreated with or without
6	AZM before infection. Then, the cells were cultured in AZM-free medium. (iii)
7	Pretreatment of viruses: the viruses were pretreated with or without AZM for 1 h before
8	infecting A549 cells, followed by culturing in AZM-free medium. (iv) At the time of
9	infection: A549 cells were infected with the premix of viruses and AZM for 1 h, and
10	cultured in AZM-free medium. Virus titers in culture medium (a) and viral M1 gene
11	expression level in A549 cells (b) were examined after 48-h culture. The values of
12	AZM-treated cells were converted as percent index and are shown by means± S.E. from
13	6 individual data. * p <0.01, n.s., no significant differences (MWU test).
14	
15	Figure 2. Half-maximal inhibitory concentration (IC ₅₀) and cytotoxicity of AZM.
16	(a) The IC_{50} of AZM on progeny virus titers in culture medium, with representative
17	images of formed plaques (lower pictures). The graph is shown as means \pm S.D. from 6
18	individual data. (b) Cytotoxicity of AZM on host A549 cells under non-infectious
19	(upper panel) or infectious condition (lower panel). A549 cells were incubated with
20	various concentrations of AZM in the absence or presence of the viruses. The cells were
21	cultured in AZM-free medium for 48 h and subjected to MTT assay. Each graph is
22	expressed by means \pm S.D. from 6 individual data, * <i>p</i> <0.01, <i>one-way</i> ANOVA.
23	

1

Figure 3. Hemagglutination inhibition profile of AZM. Serially diluted virus solution

25 was incubated with an equal volume of PBS (control) or AZM (at the indicated

26 concentrations), respectively. Fresh 1% RBCs was added to each well, and then

27 hemagglutination between RBCs and viruses was detected (left panel). The graph (right

28 panel) is expressed as hemagglutination units (HAU) versus AZM concentration.

29 Representative data from 2 independent experiments are shown.

30

31 Figure 4. Effect of AZM treatment on virus attachment and internalization.

32 Inhibitory activity of AZM at the attachment (a) or internalization stages (b) of viruses 33 based on expression level of viral M1 (left) and NP genes (right). Attachment stage: the 34 viruses were premixed with or without AZM. A549 cells were infected with the viruses 35 for 1 h at 4°C, and virus gene expression in the cells was analyzed. Internalization stage: 36 A549 cells were infected with viruses at 4°C for 1 h and then cultured with or without 37 AZM at 37°C for 1 h. After that, the cells were treated with proteinase K and subjected 38 to gene expression analysis. Data are expressed as means \pm S.E. from 9 individual data 39 by three independent experiments. p<0.05, n.s., no significant differences (MWU test). 40

Figure 5. Inhibitory effect of AZM on progeny virus proliferation. A549 cells were first infected with viruses and co-cultured with or without AZM. After 10-h culture from the first infection, viral M1 expression in host cells (a) and progeny virus titers in culture medium (b) were examined. Harvested medium containing budded progeny viruses as well as AZM was exposed to newly prepared A549 cells. The cells were cultured in AZM-free condition for 7 h, and then M1 gene expression in the cells was 47 analyzed (c). Data are expressed as means \pm S.E. of 12 individual data from three 48 independent experiments. **p*<0.05, n.s., no significant differences (MWU-test).

49

50 Figure 6. Therapeutic advantages of AZM on mice. (a) Schematic procedure is as 51 follows: all mice were intranasally infected with mouse-adapted viruses. After 52 inoculation, lung tissues dissected from the non-administered group was collected as a 53 reference control. Other groups were intranasally administered with or without AZM 54 twice a day for 3 days. At the indicated time points, lung tissues were sampled from the 55 treated mice. (b) Expression of viral M1 (left) and NP gene (right) in the lungs. Each 56 gene expression level was normalized by that of GAPDH and relatively compared 57 between control and AZM-administered groups at 1, 2, and 3 days post-infection based 58 on reference control. The graphs are shown by median, with an interguartile range from 59 more than 5 individual data (control: n=5 and AZM: n=5-6 each day). *p<0.05, 60 **p < 0.01 (*two-way* ANOVA). Actual body temperature (c) and percent body weight (d) 61 of infected mice. Each vital sign was monitored and compared between control and 62 AZM-treated mice during before, and after the infection. Data are shown as median 63 with an interquartile range from indicated individual mouse. ***p < 0.001 (two-way 64 ANOVA).

- 65
- 66