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Abstract
Doctor of Philosophy

A Framework for Object Detection using Deep Learning

by Tran Duy LINH

In the present thesis, our aim is to make an object detection framework
on images using deep learning. Object detection is one of the most challeng-
ing task in computer vision because the detector needs to output not only
the location of objects but also predict the object label and/or perform the
object segmentation. We focus on developing robust object detection meth-
ods that reduce the detection error rate through a two-stage deep network.
Since the detection method relied on sliding window scheme, the outputs
cover a number of false positive detections and often have low performance
on small scale or low resolution. To address these problems, we propose a
method that uses a secondary network as classifier to classify these detec-
tions again. This approach allows us to perform high level inferences in-
cluding re-scoring detection confidence and label choosing thus making the
better detection results.

For the testing, we perform our approach on several different kinds of ob-
jects. We focus on testing key applications of object detection such as pedes-
trian detection and detecting multi-object in nature scenes. We compare the
results with cutting-edge object detection methods. The experimental results
show the effectiveness of the proposed method. Some results achieve the
state-of-the-art performances for difficult conditions such as small scales and
low resolution.

The present thesis makes four main contributions. Firstly, we introduce
the two-stage deep neural model for object detection in images. The two-
stage model uses a proposal network to extract the set of object candidates
which are the proposal bounding boxes, the classes and the scores of objects
available in the image. The second stage uses a deep neural network to re-
classify proposal detections, then we use a combination function to combine
the scores of the first stage and the second stage. We show that the connection
between two scores makes the better performance. Secondly, we explore the
role of combination function in boosting the performance of both classifica-
tion network and overall detection model. Thirdly, we show the effectiveness
of using two-stage model for small object detection. Lastly, we present the
idea to apply the new design for the object detection by segmentation prob-
lem.
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Chapter 1

Introduction

Computer vision has a long history in computer science. The goal of com-
puter vision is to extract useful information from images or videos. Although
various applications of computer vision are now in daily use, it remains a
challenging task. The computer’s performance is still well below a human’s
performance.

A key problem is how to develop a high-level understanding of the in-
tricate structure of large datasets. Many computer vision algorithms involve
pre-programming to solve a particular problem without pre-training the data.
This approach has been used across many fundamental computer vision prob-
lems, but is limited due to the complexity of image data. A data-driven ap-
proach has been proposed to address this problem. In particular, the com-
puter vision method uses training data to try to predict the real world data.
We were able to rapidly improve performance by building better datasets
and proposing better machine learning algorithms.

To obtain high-level information from images, object classification and
detection are vital computer vision problems. These tasks would have many
applications, such as in robotics, auto manufacturing, auto driving, and hu-
man computer interaction. However, they remain challenging because of a
number of object properties, such as viewpoint variance, scale variance, de-
formation, occlusion, illumination, and background clutter. Thus, a model
would need invariance to these variations while retaining sensitivity to inter-
class variations. Object detection is also required to localize the object in the
image.

This chapter is organized as follows. In Section 1.1, we present the pur-
pose of the thesis. Section 1.2 describes applications of object detection. Sec-
tion 1.3 discusses why this task is so challenging. Section 1.4 introduces some
approaches to resolve the object detection problem. Section 1.5 presents an
overview of our proposed method. Section 1.6 details the contributions of
this thesis.

1.1 The purpose of this research

In the present thesis, we propose a deep neural model for object detection in
images. In particular, we build a two-stage network to predict object location
and class in still images. The object categories vary from single category
(human) to multiple categories. For a specific problem, we propose several
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model designs and use multiple evaluation methods. Our models aim to
improve object detection performance. In general, a detector performs two
key operations:

• Extracting feature maps from an input image, and

• Classification/regression from those feature maps to output detections.

Recent state-of-the-art object detectors rely on the box-proposal-based method,
in which the image is processed through several steps: fixed sliding win-
dows extraction, class-agnostic box prediction, box refinement and class pre-
diction. Our main contribution to design a framework that includes more
processing steps, such as re-classifying object proposals by an additional net-
work, to achieve higher inferences from the output of these steps to improve
overall performance. However, adding more processing steps leads to an in-
crease in model complexity and optimization difficulty. For example, given
an image with the class cat, the first model may return the location and the
correct class while the second model may return another class, such as dog.
In this scenario, we do not know which model is correct, so the relation-
ship between the two models impacts the final detection performance. Our
overarching model should predict better detections based on the agreement
between the first model and the second model. The mismatch of predicted
classes requires sophisticated training and decision-making. The purpose is
to make a connection between the confidence levels of the first model and
the second model. This thesis focuses on general object detectors that are
not strong-classification-type. We discuss why this task is so challenging in
Section 1.3.

1.2 Application of object detection

Although object detection has formed over five decades, it remains a very
challenging task. It has occupied thousands of scientists and countless en-
gineers, but we are still far from achieving computer performance equal to
human performance. Despite this, object detection is an attractive and active
research task because of its important applications. Our first consideration
is the appearance of people in images. “Human” is the most important ob-
ject and may be the most frequently captured object in images and videos.
For example, an autonomous car uses pedestrian detectors to detect the sur-
rounding people in order to improve safety. Auto-driving systems typically
include camera, radar, laser light, Global Positioning System (GPS), and com-
puters to control the vehicles and travel between destinations without the
need for human input. In this case, via one or multiple cameras, the de-
tectors “view” the surrounding world and identify the locations of people,
such as pedestrians walking on the sidewalk or crosswalk, or cyclists riding
bicycles. Such detectors can be applied for any level of automated driving
system, from driver assistance to full automation.

Figure 1.1 displays examples from the Caltech pedestrian dataset (Dollar
et al., 2012). The images show pedestrians captured by camera, and were



1.2. Application of object detection 3

FIGURE 1.1: Pedestrians in an urban scene. These images are part of the Caltech
pedestrian dataset, which was captured in an urban environment. People appear

alongside other vehicles with low resolution.

collected from a vehicle driving through regular urban traffic. The detectors
should be able to recognize people alongside other objects, such as cars, trees,
buildings, and traffic signs.

Another application of people detection is video surveillance systems.
With the increasing number of cameras in public places such as streets, shop-
ping malls, and train stations, manual observation of video streams is eco-
nomically infeasible. Thus, there is a crucial role for intelligent surveillance
systems that can continuously analyze video streams. In terms of e-health
applications, a monitoring system detecting the falls of elderly people would
reduce health risks and support elderly people to live longer in their home
environment.

Object detection also plays important roles in intelligent digital content
management software. In this application, the program automatically adds
tags to images, making the user image library searchable and displaying rel-
evant content to users. Figure 1.2 shows examples of objects captured in their
natural context. The number of recent worldwide captured images is about
one trillion per year1. Thus, each person captures an average of one thousand
images in 2-3 years. Most images are casual snapshots and it is difficult to or-
ganize these huge numbers of images. While devices might already tag im-
ages with date and location, intuitive information, such as objects or names

1http://blog.infotrends.com/how-long-does-it-take-to-shoot-1-trillion-photos/
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FIGURE 1.2: A collection of multiple categories of objects in their natural context.
These images are part of the Common Objects in COntext (COCO) object detection
dataset, which is used for evaluating some models in this thesis. The categories

cover various sizes, colors, backgrounds, and illuminations.

of people in the image, would support understanding of image contents and
associated tools.

1.3 Why this is challenging

Object detection is challenging because the detector needs to simultaneously
detect and classify multiple objects. Unlike object classification, the output of
object detection is variable in length, and the number of objects may change
from image to image. Thus, the biggest difficulty in object detection is the
amount of variations in images. We consider the following specific variation
types:

• Viewpoint variation: since the object is captured in many ways with
respect to the camera, a single instance of an object can appear very
differently.

• Scale variation: the variation in scales occurs not only in the real world
(the different sizes of objects within same class), but also in the im-
age. In the image, object size is often defined by the size of the object’s
bounding box, and the detector needs to handle this large variation.
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• Intra-class variation: this variation is very common because of the dif-
ferent types of interest categories. For example, consider a “potted
plant” object; there are no regulations for the flowerpots nor the plants.
The impact of this variation type depends on the object class.

• Deformation: many objects can be deformed in various ways. This
type of variation often appears in animals. For example, human ap-
pearance and pose both change between images.

• Occlusion: the occlusion level is defined by the proportion of visible
parts. One object detection problem is how to predict the location of the
occluded parts of an object. Although the object class can be predicted
by some visible object parts, the whole object location is quite difficult
to predict. In some cases, the detector needs to predict the whole object
position even if the proportion of visible parts is very small.

• Illumination conditions: an object’s appearance is also affected by il-
lumination. For example, an object will look different in sunlight, in
shadow during the day, in dim light at night or under artificial light.
Although these conditions seem trivial with the human visual system,
the change in illumination causes huge changes at the pixel level, which
has a strong impact on detection performance.

• Background clutter: this variation is common in natural-context im-
ages where the same object may be captured against different back-
grounds. For example, images taken in outdoor or indoor environ-
ments will have completely distinct backgrounds. In some cases, the
object and the background may be very similar, so a robust detector
would need to distinguish these changes in background.

Since the above challenges in object detection are not independent (in fact,
they often appear together), the detector needs to address them simultane-
ously, which adds to the complexity of object detection. Moreover, some of
these challenges conflict. For example, a detector that handles large intra-
class variation may output many false positives (incorrect detections) over a
complex background.

In Figure 1.1, people appear with different poses, clothing, and sizes, with
variation of illumination conditions and different backgrounds, highlighting
difficulties in people detection. Other challenges include the imbalance be-
tween positive images and negative images. More than 50% of the images
collected contain no pedestrians. The number of pedestrians in positive im-
ages is also very low. Training the detector on this dataset thus leads to insta-
bility and inaccuracy because conventional detectors are usually designed to
improve accuracy by reducing errors. This problem is crucial in some appli-
cations, such as safety driving systems, which require the detection of rare
events (pedestrian appearances).

Figure 1.2 provides examples of challenges for general object detection
using the Common Objects in COntext (COCO) dataset (Lin et al., 2014). In
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FIGURE 1.3: Objects with high-level context and background. Some objects can only
be detected using image context and more sophisticated techniques, such as high-

level inference, to make correct decisions about ambiguous object instances.

these images, apart from the categories of interest, there are many other ob-
jects. Some different objects are also very similar. Thus, the challenge is that
an image contains multiple objects. The identity of many objects can only
be resolved using context due to the small size or ambiguous appearance in
the image. The COCO dataset contains more object instances per image (7.7)
as compared to the Caltech pedestrian dataset (1.5). Thus, detectors are also
required to perform precise object localization.

Figure 1.3 shows object detection in images with high-level background
information. To identify false detections, the detector needs to process not
only the object’s sub-window, but also develop a high-level understanding of
the surrounding background. In the left image, by looking at the background
(the bus), humans can easily eliminate the false detection case because it is
clear that the people posing on the side of the bus are not real. Similarly,
in the right image, the surrounding context (the book with text) indicates that
the apparent objects inside the book are not real objects. However, to encode
this type of information in the detector is quite difficult. The detector needs
to use context information and high-level inference methods to determine
correct objects.

Another challenge in object detection is small object detection where ob-
jects appear in a small size because of the camera angle and focal length (we
only consider small objects by their appearance in an image, not in propor-
tion to the real world). Usually, small objects have low resolution and ap-
pear near large objects. The detector tends to focus on large objects and ig-
nore small ones. Thus, the detector needs to handle insufficient resolution
instances to detect small objects.

1.4 Object detection background

As mentioned above, the object detection problem has a long history of re-
search, and the detection method involves two main operations: feature ex-
traction and the detection algorithm. The feature extractor transforms the
input data into a reduced set of features (or a feature vector). The selected
subsets of features are expected to contain the relevant information from the
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input data. Then, the detection algorithm uses these selected features to per-
form the detection.

There is no standard definition of what constitutes features; the features
depend on the task at hand. However, it is expected that the feature extractor
has the property of being repeatable. Many computer vision algorithms use
the feature as a starting point for subsequent algorithms. Many feature ex-
tractors have been developed, and they can be divided into two types: hand-
crafted feature extractors and learned feature extractors.

• Handcrafted feature extractor: common examples include those based
on the histogram of oriented gradients (HOG) (Dalal and Triggs, 2005a)
and SIFT (Lowe, 1999). These methods extract the feature from an im-
age using a predefined algorithm created from human knowledge. The
feature extractor can be a very basic algorithm (e.g., edges and corners)
and is often inspired by the domain and the particular application.

• Learned feature extractor: this type of feature extractor often refers to
learned features obtained by training a deep learning network. The
deep learning method uses a backpropagation algorithm to update its
internal parameters that are used to compute the image representation
(the feature). Feature learning can be divided into unsupervised and
supervised. For example, AlexNet (Krizhevsky, Sutskever, and Hin-
ton, 2012) is a notable work from the beginning of the artificial intelli-
gence (AI) era. This breakthrough research uses a convolutional neural
network (CNN) to drastically reduce the error rate of object recogni-
tion, and it was a key catalyst of the subsequent quick adoption of deep
learning by the computer vision community.

Compared to handcrafted feature extractors, learned feature extractors have
dramatically improved the state-of-the-art visual object recognition, object
detection, and many other tasks. Note that the difference between the two
types is the approach to obtaining the features. Handcrafted feature extrac-
tion does not depend on the data, so the quality of extracted features relies
on the algorithm itself. This approach can deal with small-size homogeneous
datasets and often runs fast. In contrast, learned feature extraction depends
on the dataset. It tends to perform well with heterogeneous and unfamil-
iar datasets. The quality of the dataset and the learning algorithm strongly
impact the quality of extracted features.

The other component of the object detector is the detection algorithm.
Numerous models have been studied. The initial idea is sliding window
classification, in which the detector tests each sub-window. The sub-window
can then be further processed to match with actual object locations. Detection
algorithms can be divided into two main approaches:

• The part-based method (Felzenszwalb et al., 2010): the object is repre-
sented as a set of parts constrained in a possible spatial arrangement.
For example, a human can be modeled as a head, two legs, two arms,
a torso and the connections of those parts. In this approach, the model
uses a star-structure by defining “root” filters plus a set of part filters
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and a deformation model. The model then trains the bounding boxes
based on the set of part bounding boxes.

• Region proposals approach (Girshick et al., 2014): this simultaneously
predicts the location and class. Instead of using the sliding window,
which is weak for localization, this method uses a set of object candi-
dates to classify the object classes. It then performs regression on the
boxes to forecast the offset between predicted boxes and ground-truth
boxes. This method is usually based on the rich features extracted by
the learned feature extractor.

Both of these approaches rely on the image feature maps and reduce the
object detection problem to binary object classification problems with bound-
ing box regression. Other approaches, such as integral channel features (ICF)
(Dollár et al., 2009), use multiple registered image channels and the direct
sub-window location with smaller step size than HOG to output object de-
tections. The details of these methods will be discussed in Chapter 2.

1.5 Overview of our method

Our approach to object detection focuses on reducing errors (specifically,
false positive detections) and improving feature extraction.

First, we adopt the region proposal method to extract the set of object
candidates (the object proposals). However, because of the sliding window
scheme, in which a rectangular region of fixed width and height “slides”
across an image, the output of the detector contains many detection errors.
There are two types of errors in the output object detection: poor localiza-
tion and misclassification. For instance, in the Single Shot Detector (SSD)
(Liu et al., 2016) method, more than half of false positive detections are due
to misclassification. Misclassification detection occurs because of ambigu-
ousness with background objects, similar objects, or dissimilar objects. This
issue motivates us to use an additional classifier to reduce the number of mis-
classification detections. The results of the first-stage network (the proposal
network) and the second-stage network (the classification network) are used
to perform the final detection. To provide the final output, a single network
output of the two networks is not robust; they must be combined for the final
results. We found that aggregation between the first-stage network score and
the second-stage score improved the overall performance of the network.

Second, we provide an intensive method to combine the two networks
by using the output of the first-stage network as additional input for the
second-stage network. We call the new model trained combination, and it
is able to discern where the first model performs well and where it performs
poorly. Thus, the new trained combination model achieves higher perfor-
mance than single-stage detectors. Our experiment shows that the new clas-
sification model only adds a small computational cost while increasing the
speed of convergence.

Third, we adopt a simple architecture (Mask R-CNN) (He et al., 2017), and
re-design the feature extraction module for object detection by segmentation
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(instance segmentation). We concentrate on one object detection component:
the feature pooling module. Our approach is to consider it as a subnetwork.
Our pooling module is a quantization-free layer, multi-scale ensemble that
preserves exact spatial locations between the Region of Interest (RoI) and
the pooled feature map. Although the proposed approach is simple instance
segmentation, we show that with appropriate network configuration, it can
provide state-of-the-art results.

1.6 Contributions

The main contributions of this thesis are:

• A proposed hierarchical two-stage network to improve object detec-
tion performance. The image is processed through a proposal network
and then a classification network. Based on our study, the two-stage
network significantly improves the detection quality by eliminating the
detection errors of the given object detector. We prove that training
the secondary classifier improves the detection performance without
requiring additional training datasets.

• The connection function between two networks. We discuss how to
combine the two networks by introducing various combination proce-
dures. We also propose an optimized combination method to improve
the performance of the final detection scores. Remarkably, the proposed
combination method can be used to efficiently train the classification
network. The final output has higher accuracy than the stand-alone
proposal network as an object detector. The experimental results ob-
tained using the proposed method are comparable to those obtained
using state-of-the-art object detection methods.

• A proposed new network design to extract a rich and multi-scale fea-
ture maps for object recognition. Our experiments show the improve-
ment in the feature extractor helps to improve the quality of instance
object segmentation.

The thesis also discusses how to select the detection network for specific ob-
ject classes of interest as well as the effect of our model on the overall per-
formance. Given a proposal detector, the proposed model improves the per-
formance of many object classes across different settings, especially for small
objects. We evaluate our proposed model with extensive experimental tests.

1.7 Outline of thesis

Chapter 1 provided an overview of our research goals and the applications
of object detection. We briefly present the object detection challenges, back-
grounds of common object detectors, our approach for the deep-learning-
based detector, and a summary of our contributions. The remaining chapters
are organized as follows:
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• Chapter 2 introduces the state-of-the-art methods in object detection.
We describe the main approaches to object detection and show their
contributions. We also explain our motivation for using deep learning
methods for object detection.

• Chapter 3 presents a high level overview of our framework for object
detection. In this chapter, we introduce a key idea of our approach and
the overall architecture of our model.

• Chapter 4 describes the proposed models in detail. It presents two
variations of our proposed models: post-combination and trained com-
bination. Our models are trained and tested using several object de-
tection datasets. The results show that our proposed models help to
improve the performance of given proposal object detectors. The two-
stage model not only improves the performance of the proposal net-
work, but also achieves state-of-the-art results in small-scale object de-
tection.

• Chapter 5 proposes a new design for a feature extraction network. The
new feature extractor is used to detect objects and segmentation inside
the detected bounding box (instance segmentation). In this chapter, we
also present advantages of the new design and the potential for object
detection by a bounding box.

• Chapter 6 discusses the use case of our proposed model. It summarizes
the key contributions of our method and discusses limitations. Finally,
we suggest directions for future work.
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Chapter 2

Related research

Object detection in images and videos has occupied thousands of experts and
computer science communities over several decades. Although it has been a
very challenging task, many applications use object detection as a primitive
process. Progress in object detection has grown quickly in recent years, with
each year’s new detectors outperforming the previous ones. This chapter de-
scribes the related research in object detection. We review the contributions
of each work and focus on the two main detector components:

• The feature extractor, and

• The detection framework that uses the feature extractor

We review the methods related to our research and point out the advantages
and disadvantages of different detectors. Subsection 2.1 presents the state-of-
the-art handcrafted-feature-based models. Subsection 2.2 covers the learned-
feature-based models, which mainly focus on deep learning. Subsection 2.3
shows our motivation based on the reviewed methods.

2.1 Handcrafted-feature-based methods

Handcrafted-feature-based methods rely on the handcrafted feature extrac-
tor, which we briefly described earlier. The aim of this approach is to extract
the most relevant features needed to predict object classes and locations. A
feature can be the simplest descriptor, such as color channels and the gray im-
age, linear filters (e.g., Difference of Gaussian (DoG)), non-linear filters (e.g.,
gradient), or the gradient histogram. The first notable attempt was by Viola
and Jones (Viola, Jones, and Snow, 2003; Viola and Jones, 2004), who applied
their (Viola-Jones) VJ detector to the task of pedestrian detection by using
the Haar-wavelet-like features descriptor and AdaBoost (Freund, Schapire,
et al., 1996) to train cascades of weak classifiers. This method combines both
the appearance information and the motion information to detect pedestrians
in low resolution and difficult conditions (such as rain and snow). In 2005,
Dalal and Triggs introduced the histogram of oriented gradients (HOG) fea-
ture descriptor (Dalal and Triggs, 2005a), which significantly improves the
performance of people detection as well as general object detection. The
method used HOG feature vectors and linear support vector machine (SVM)
to output the object/non-object classifications. The deformable part model
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(A) (B) (C) (D)

FIGURE 2.1: Deformable part model and detection examples. There are three com-
ponents in this person detection model: a root filter (2.1b), higher resolution part
filters (2.1c) and associated deformation models (2.1d). This visualization shows the
positive weights at different orientations. The detection results are shown in image

(2.1a).

(DPM) (Felzenszwalb, McAllester, and Ramanan, 2008; Felzenszwalb et al.,
2010), used HOG as a building block. Handcrafted-feature-based models
have been successful in detecting small-size datasets, and have been criti-
cally important for state-of-the-art object detection methods for a long time.
These types of models are often referred to as classic detectors.

We review the two main methods that use the handcrafted feature ex-
tractor with their two contributions: a multi-part-based detection and box
prediction, and a multi-image channel combination for box classification.

2.1.1 Deformable Part Model

The Dalal and Triggs detector (Dalal and Triggs, 2005a) based on the HOG
feature extractor and linear SVM helps improve the overall object detection
performance compared with previous works. It requires only one model for
each object class to calculate the weighted HOG feature for object prediction.
The positions of objects in the image depend on the locations of sliding win-
dows. This approach limits some object variants as described in Subsection
1.3. More specifically, nature objects have many variants under non-rigid de-
formations, intra-class variability, and different viewpoints. These variants
require a better representation of objects as a deformable part model.

The deformable part model is based on the pictorial structure frameworks
(Fischler and Elschlager, 1973; Felzenszwalb and Huttenlocher, 2005), and
represents the deformable components by spring-like connections between
pairs of parts. The model utilizes a star-structure, part-based model with
three components: a “root” or “body” filter, a set of part filters and a defor-
mation model. The part-based model is based on the idea that objects in the
same class share the same structure. The most difficult part of training is
the latent information since the bounding boxes of parts are not labeled (the
weakly labeled setting).
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The part-based model is depicted in Figure 2.11. The “root” filter is used
to calculate the response of the “root” filter on a HOG feature map. Likewise,
the part filters are used to calculate the response of part filters at higher reso-
lution. The final summarization is to maximize the local responses and min-
imize the global shape deformation. In the work of Felzenszwalb (Felzen-
szwalb et al., 2010), bounding box prediction is improved by using multiple
overlapping detections for each object and eliminating weak detection via
non-maximum suppression (NMS). Following the work of the DPM detector,
some variant methods have been proposed, such as multi-task (MT)-DPM
(Yan et al., 2013). Interestingly, the models that use only a single component,
such as Squares Channel Features (Benenson et al., 2014), Roerei (Benenson
et al., 2013), can output similar performance for specific object detection tasks
(e.g., pedestrian detection).

Regarding the bounding box prediction, DPM uses a linear least-squares
regression. The object bounding box containing four coordinates (upper left
and lower right corner) is trained by linear functions, and the input data
are the coordinates of object parts. Notably, this simple method provides
significant improvements in accuracy for predicting locations of some object
classes. Since object localization is an important part of object detection, it
also improves the overall detection performance.

2.1.2 Integral channel features (ICF)-based methods

Integral channel features (ICF or ChnFtrs) (Dollár et al., 2009) is a popular
method for object detection. The idea behind ICF is to use an integral image
to extract features such as histograms, the local sum, and Haar-like features
from multiple registered image channels. The input images are transformed
by linear and non-linear functions to compute the image channels. With a
starting point of the handcrafted feature extractor, ICF addresses two prob-
lems: analyzing or optimizing the features, and efficient feature computa-
tion. The general algorithm can be summarized by the following steps:

• Compute multiple image channels using linear or non-linear transfor-
mations of the original input image. For example, the common regis-
tered channels are: gray and color, linear filters (Gabor filter, DoG filter)
and non-linear (gradient magnitude, Canny edges (Canny, 1986)).

• Extract the features from each channel. The candidate features are se-
lected randomly. For example, with the sum over a rectangular region
in a given channel, the detector can choose a random channel index and
rectangle.

• Apply the Boosting classifier (Friedman, Hastie, Tibshirani, et al., 2000)
with weak classifiers as the depth-two decision trees. The benefit of
using the Boosting classifier is fast learning. The method can use other
classifiers, such as SVM, to classify features.

1We used the implementation from Girshick, Felzenszwalb, and McAllester, 2012. The
tested images are from the Institut National de Recherche en Informatique et en Automa-
tique (INRIA) person dataset (Dalal and Triggs, 2005b)
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(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

FIGURE 2.2: Example image (A) and computed channels. The simplest image chan-
nel is gray image (B). A color image can also be used, such as CIE-LUV channels (C),
(D) and (E). Other non-linear transformation channels include: the gradient magni-
tude (F) and the gradient histogram, which is quantized to the 6 orientations shown

in (G) - (L).

• Finally, the classifier is used to classify the object. The ICF detector uses
the sliding window method over multiple scales to predict the object
location.

Some examples of channel types are shown in Figure 2.2. Typical image chan-
nel types include a gray image (2.2b), LUV color channels (2.2c, 2.2d and
2.2e), the gradient magnitude (2.2f), and the gradient histogram (2.2g - 2.2l).

The ICF presents a method to extract features by capturing the richness
from different channels. To study the performance of various channel types,
the detector separates each channel to evaluate detection performance. Al-
though each channel has a different contribution, the more channels that are
combined, the more accurate the detection.

For the bounding box prediction, the ICF method uses a sliding window
scheme. Compared to the HOG detector, ICF uses a smaller window step
size so that it can predict more precise object locations. However, bounding
box regression has not been used with the DPM method.
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Some improved versions of ICF include (Benenson et al., 2012; Benenson
et al., 2013) for the pedestrian detection task. Another notable variant of ICF
is aggregate channel features (ACF) (Yang et al., 2014; Dollár et al., 2014) for
general object detection. To increase detection performance, ACF extracts
richer image representations by computing multi-resolution image features.
ACF addresses computational cost by introducing a fast features approxima-
tion. This approximation, in addition to the boosted tree archives, leads to
state-of-the-art performance for many object detection tasks.

The variable of extra features as input channels shows improvement over
the baseline detectors. It is especially useful for many pedestrian detectors
that are based on decision forests. For example, Daniel Costea and Nede-
vschi, 2016 utilized semantic segmentations as context information for pedes-
trian detection and integrated them as an extra channel for detecting. The
semantic channel detector benefits from the semantic information in a large
receptive field. Another example is the ACF+SDt (where SDt is the stabilized
Dt-motion feature) method (Park et al., 2013), which embeds the optical flow
into channel features and uses a boosted decision forest to detect objects in
videos. Motion and optical flow uses are sometimes referred to as temporal
channels, and are often used to detect objects in videos. The ICF method can
also be applied to feature types captured by other sensors, such as depth in-
formation. For instance, DispNet (Mayer et al., 2016) provides large-scale
datasets for training and evaluating scene flow.

2.2 Deep neural network based methods

Deep neural network based methods (also known as deep learning methods)
are a class of data-driven methods that use deep networks to train the feature
extractor. Deep learning methods allow a machine to automatically discover
the representations needed for classification or detection. The network con-
tains multiple levels of representation, starting with the raw input image,
which the deep learning network transforms into a higher, more abstract
level of representation. For classification tasks, which are a core problem in
computer vision, deep learning methods eliminate irrelevant variations and
amplify the information for classification. For example, with image data, the
input is a three-dimensional array of numbers, and the features in the first
layer often represent the absence of edges in the image. The next layer iden-
tifies particular arrangements of edges with varying edge positions. These
feature layers, however, are not defined by human engineers. The features
are learned from data by a training process.

Deep learning has been applied with great success in object detection and
classification, making major advances in solving computer vision problems,
such as handwritten digit recognition (LeCun et al., 1990), traffic sign recog-
nition (CireşAn et al., 2012), and face recognition (Taigman et al., 2014). Con-
volution neural networks (CNN) are also able to classify at pixel-level, mak-
ing them suitable for image segmentation.

Despite these successes, deep learning was largely ignored in favor of
other machine-learning methods until the release of ImageNet (Deng et al.,



16 Chapter 2. Related research

2009), which used the WordNet Hierarchy (Miller, 1998). AlexNet (Krizhevsky,
Sutskever, and Hinton, 2012) has the highest record for image recognition by
a large margin. The success of deep learning comes from two factors: an
ability to learn very complex functions for rich input representation (feature
extraction) and sufficiently-sized diverse training data. Although state-of-
the-art deep-learning-based feature extractors are mostly designed for clas-
sification tasks and are often trained with large amounts of data (1.2 million
images in ImageNet), they can be efficiently applied to other smaller datasets
via transfer learning and to other related tasks (e.g., detection, segmentation)
via multi-task learning. We discuss this in Subsection 2.2.1.

2.2.1 Object detection using deep learning

In this section, we use object detection networks to denote object detection
using deep learning methods. In practice, most object detection networks are
not trained from scratch because the dataset for training is not big enough.
For example, the ImageNet training set typically consists of 1.2 million im-
ages compared with about 5,000 images in Pascal visual object classes (VOC)
train-val set (Everingham et al., 2010). With the same type of data, the deep
network is able to store knowledge gained while solving one problem (e.g.,
ImageNet classification). When applied to other tasks or other datasets, the
pre-trained network is used as an initialization or a fixed feature extractor.
This use of deep networks is called transfer learning. Applications of trans-
fer learning include the following.

• Deep network as fixed feature extractor: the weights of the pre-trained
network are fixed except for the last fully-connected layers. The recog-
nition model uses the output of the network and a classifier to train for
a new dataset.

• Fine-tuning deep network: in this case, the model uses the pre-trained
network parameters as initialization and slowly changes them by train-
ing with the new dataset. It is possible to keep some layers of the pre-
trained network unchanged (the low-level general representation lay-
ers) and fine-tune only some high-level layers.

• Pre-trained models: the model uses the pre-trained network directly.

The use of the deep network as a feature extractor for object detection
has been studied in several works. For example, convolutional channel fea-
tures (CCF) (Yang et al., 2015) uses a concatenation of low-level deep network
feature extraction and a boosting classifier for face detection and pedestrian
detection. The benefits from the rich features of the deep network guaran-
tee high performance for various vision tasks. Similarly, Hosang et al., 2015
and Tian et al., 2015 used the deep learning based method with boosted tree
classifiers for pedestrian detection.

Regarding object detection by the deep network, the detection task or seg-
mentation task can be reduced to the classification task and regression task by
multi-task learning. The most successful general object detections are based
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on the region-CNN (R-CNN) (Girshick et al., 2014) family method. The de-
tector consists of two key components: a score function that maps the input
image to the output score, and a loss function that measures the quality of the
detection task. The object detection task must predict the object class and ob-
ject location. In a deep neural network, multi-task learning typically shares
parameters of hidden layers while maintaining several task-specific output
layers. For example, one of the primary works using multi-task learning for
object detection is the Fast R-CNN method (Girshick, 2015), which has the
following two outputs for each Region of Interest (RoI): softmax probabilities
and per-class bounding-box regression offsets. The multi output network al-
lows end-to-end joint training with multi-task loss. The network is first pre-
trained by ImageNet and then fine-tuned with the specific-task dataset (e.g.,
Pascal VOC). Faster R-CNN (Ren et al., 2015) introduced the Region Proposal
Network (RPN), which is used to calculate object proposals.

2.2.2 One-stage models

In this section, we discuss one-stage object detection models, which use only
a single-stage network without region proposals. This type of detector trains
quickly and can be efficiently deployed. Some examples are SSD (Liu et al.,
2016), You Only Look Once (YOLO) (Redmon et al., 2016), deconvolutional
SSD (DSSD) (Fu et al., 2017), and Overfeat (Sermanet et al., 2013). Other
methods extend this approach to predict boxes, classes, and poses (Poirson
et al., 2016).

Single Shot Detector (SSD)

SSD is a single-shot feed forward network based on a pre-trained network
for object detection. The SSD model is very similar to the RPN component of
the Faster R-CNN model, except that the SSD model directly predicts class-
specific and box offsets, and does not require a second object detection net-
work. Instead of using a CNN module to extract the set of RPN, the SSD
uses a fixed set of default boxes (anchors) for prediction, and thus can avoid
merging the RPN module with Fast R-CNN. The SSD model can generate
a large pool of possible box shapes by discrete output into a set of default
boxes of different scales and aspect ratios at several feature map locations.
This approach allows the SSD model to achieve slightly better speed than
Faster R-CNN-like detectors.

You Only Look Once (YOLO)

YOLO (Redmon et al., 2016) is a single neural network for object detection.
Since most accurate object detectors are slow, YOLO’s goal is to achieve real-
time object detection. In this approach, object detection is a regression prob-
lem of image pixels to bounding box coordinates and class probabilities. For
simplicity, the input image is passed through a deep network that look like
a normal CNN. The output is a vector of bounding boxes and class predic-
tions. The image is divided into an S × S grid of cells. Each cell predicts
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B bounding boxes and C class probabilities and confidence levels for those
boxes. The output predictions are encoded as an S× S× (B× 5 + C) tensor.
There are two changes in the multi-part loss function for better results: 1) the
confidence prediction of boxes containing an object and boxes not containing
an object are different, and 2) predict the square root of the bounding box
width and height instead of directly predicting the width and height. Im-
proved versions of YOLO include YOLO9000 (Redmon and Farhadi, 2017),
which has accurate localization while maintaining a high speed. A number
of improvements have been applied, such as batch normalization on all con-
volutional layers, a high-resolution classifier (from 224× 224 to 448× 448),
convolutional with anchor boxes, dimension clusters, fine-grained features,
and multi-scale training.

2.2.3 Two-stage models

Although one-stage detectors are fast and have reasonable detection accu-
racy, the most accurate detection methods are two-stage models. Two-stage
detectors rely on two processing steps. The first successful model was R-
CNN, which was followed by a number of variants, such as Fast/Faster
R-CNN, R-FCN (Dai et al., 2016), Zagoruyko et al., 2016; Bell et al., 2016,
PVANET (Kim et al., 2016), Shrivastava and Gupta, 2016, Shrivastava, Gupta,
and Girshick, 2016, Yang et al., 2016, Zhai et al., 2017.

Fast/Faster R-CNN

Fast R-CNN (Girshick, 2015) is a deep learning object detector that combines
an object proposal method (e.g., Selective Search (Uijlings et al., 2013)) and
a CNN classifier. Fast R-CNN introduces a Region of Interest (RoI) pooling
mechanism and multi-task losses by minimizing the loss functions of both
the class confidences and the bounding box regression.

The improved version of Fast R-CNN, i.e., Faster R-CNN (Ren et al.,
2015), replaces the region proposal component with a deep network. Faster
R-CNN has two components: an RPN and a Fast R-CNN (Girshick, 2015) ob-
ject detection network. The first component, the RPN, is a CNN that predicts
class-agnostic box proposals (object and non-object). These networks can be
trained separately or end-to-end, and they share the extracted image features
with the object detection network.

The shared features are fed to the remaining layers of the feature extrac-
tor. The second component uses the box proposals to crop features and then
outputs the class-specific and box offsets for each proposal.

Region-based Fully Convolutional Networks (R-FCN)

In contrast to previous region-based detectors, such as Fast/Faster R-CNN,
that apply the region-specific component several hundred times per image,
the R-FCN method (Dai et al., 2016) is a fully convolutional detector that
shares the computation on the entire image. The method adopts the region
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proposal and region classification of Fast/Faster R-CNN. The feature crop-
ping is taken from the last layer of features for detection in contrast to Faster
R-CNN, which crops features from the same layer where the RPN predicts
the object proposals. Because the cropping occurs at the last layer, the per-
region computation is minimized.

The R-FCN model has comparable accuracy to Faster R-CNN and often
runs faster. R-FCN has been influential in a number of follow-up works,
such as Deformable Convolutional Networks (Dai et al., 2017), FCIS (Li et al.,
2016).

Mask R-CNN

Mask R-CNN (He et al., 2017) is a method for instance segmentation. Whereas
Faster R-CNN predicts object locations and class labels, Mask R-CNN ex-
tends this architecture by adding a third branch that outputs the object mask.
The object mask is used to predict the pixel-level inside the object location
(instance segmentation). The mask branch predicts a fixed-size mask m×m
for every class, resulting in an N binary mask, where N is the number of
classes. Although the concept behind Mask R-CNN is simple, the pixel-level
prediction requires finer feature extraction. The method introduces RoIAlign,
which replaces the RoIPooling layer of Faster R-CNN, and leads to large per-
formance improvements.

2.3 Motivation of this research

2.3.1 From handcrafted feature to deep learning

Handcrafted feature extraction based models appear inferior to deep neu-
ral network based models. The accuracy gap between the two approaches
is more significant for object detection with a large-scale dataset. Although
some methods that use handcraft feature extraction, such as HOG (Dalal and
Triggs, 2005a), ICF (Dollár et al., 2009), and its variants, can achieve highly
accurate detection for specific tasks, the diversity of extracted features is lim-
ited. The HOG feature descriptor performs remarkably well in DPM (Felzen-
szwalb, McAllester, and Ramanan, 2008; Felzenszwalb et al., 2010) in terms
of addressing the wide variance in nature objects. However, there are some
methods which outperform DPM (Benenson et al., 2013) by using a single
“root” filter without parts, indicating the necessity of components and parts.
In the early history of object detection with the sliding window classification
approach, the type of classifier was also important to detection performance.
Boosting methods like AdaBoost strongly impacted detection results. With
limited image representation by handcrafted feature descriptors, some meth-
ods, such as CCF (Yang et al., 2015) and RPN+BF (Zhang et al., 2016), use
deep networks for feature extraction followed by a boosting classifier. With
the richer representative capacity of CNN, these methods improve perfor-
mance in various vision tasks. The role of classifier types (e.g., the boosting
decision tree and linear SVM) was argued in the works of MultiFtrs (Wojek
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and Schiele, 2008) and Ohn-Bar and Trivedi, 2016. This thesis uses learned
feature descriptors for image feature extraction. CNN features are able to en-
code high-level concepts of the object while lower-level feature maps detect
simple concepts like edges and shapes.

In computer vision, CNNs achieved a large decrease in error rate for ob-
ject classification and detection. The ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) shows the highest-ranked methods using CNN-
based frameworks. In 2012, AlexNet (Krizhevsky, Sutskever, and Hinton,
2012) significantly outperformed other methods in the ILSVRC, and was the
first work to popularize CNN in computer vision. The ILSVRC evaluated
algorithms designed for large-scale object detection and image classification.
The performance of AlexNet proved a hypothesis: the right algorithm and
a large amount of data (ImageNet contains 1.2 million images for training)
could be the key to successful AI. Compared to LeNet (LeCun et al., 1998),
AlexNet had similar architecture, but was much bigger and deeper. Follow-
ing the success of AlexNet, a number of CNN methods, such as visual geom-
etry group (VGG)Net (Simonyan and Zisserman, 2014), GoogleNet (Szegedy
et al., 2015), and ResNet (He et al., 2016), were the top-performing methods
in the ILSVRC. Inside state-of-the-art CNNs, there are some technical im-
provements: AlexNet and VGGNet show that the depth of the network is a
critical component for good performance. However, the drawback of these
networks is that they use a lot of memory with huge numbers of parame-
ters (about 140M for VGGNet and about 60M for AlexNet). GoogleNet uses
the Inception module, which significantly reduces the number of parameters
(about 4M). ResNet proposes the skip connection and the use of batch nor-
malization. The success of deep-network-based methods inspires us to uti-
lize CNN as a classifier and detector for our thesis. However, there is much
room for improvement, such as multi-scale feature encoding, optimization,
data augmentation, context embedding, and stabilized training.

The potential of CNN for object recognition task has recently increased
even further. The object detection performance has strong positive correla-
tion with classification performance (Huang et al., 2017). In addition, the de-
tection algorithm is an important component in the overall detection frame-
work. Our approach is based on a two-stage object detector, by which the
image is processed by a proposal network and a classification network. In
the two-stage network, the connection between the two stages is important
for higher-level reference, better optimization, and error reduction.

2.3.2 One-stage and two-stage object detectors

We consider two approaches for object detection modeling. In the first ap-
proach, one-stage detectors (unified detectors), such as SSD (Liu et al., 2016)
or YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017), use a single CNN
to predict object location in an entire image. Since one-stage detectors re-
quire only single-network computation, they are quicker than other CNN-
based detectors. However, the limitation of YOLO is that detecting small
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objects is difficult and it does not work well with unusual object aspect ra-
tios. Although SSD provides better object localization than YOLO, because
of location sharing for multiple categories, the SSD method involves increas-
ing confusion with similar object categories. Moreover, SSD and multi-scale
(MS)-CNN (Cai et al., 2016) independently predict objects at multi-feature
map locations because there are no combinations of features or scores.

In the second approach, two-stage detectors, such as Fast/Faster R-CNN
(Girshick, 2015; Ren et al., 2015) and R-FCN (Dai et al., 2016), require the first
stage to extract object proposals. By refining the object proposals twice (once
when refining the anchors to class-agnostic box proposals and once when re-
fining the RPN output to class-specific boxes), Fast/Faster R-CNN-like meth-
ods can obtain better detection results than one-stage detectors. However,
training these detectors requires significant effort because it is difficult to op-
timize each network component.

The proposed model uses a two-stage approach in which the proposals
are class-specific boxes. Without combining the first and second stages, the
proposed model is equivalent to a non-box-regression Fast R-CNN detec-
tor with a pre-computed RPN. The proposed method is also different from
Fast/Faster R-CNN in terms of sampling. The extracted RPN proposals of
Faster R-CNN are in the same image or the same image batch, whereas the
second stage can freely shuffle all the training samples in the training dataset.
From Bengio, 2012, it is efficient to optimize the classifier in which the order
of samples is changed for each epoch, and each sample is sampled indepen-
dently.
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Chapter 3

Object detection methodology

Our aim is to propose a deep learning framework to improve object detection
performance. The process includes reducing detection errors and improving
the accuracy of detections. To reduce detection errors, we first analyze the
impact of different error types. In particular, the performance of object de-
tection is summarized over classes or groups of classes. This summary does
not tell us why one method outperforms another in detail. Detection error
analysis allows us to determine which aspect of object detection could be
improved. We then improve detection performance by proposing a better
detection framework. We focus on two approaches:

• Finding a better image feature extractor, and

• Other techniques such as data preprocessing and robust optimization.

Here, we introduce our detection framework, give an overview of our design
considerations, and describe our training and inference processes. We also
summarize our key findings. The chapter is organized as follows: Subsection
3.1 presents the object detection error analysis and the contribution of each
error type to the overall detection performance. Subsection 3.2 introduces
our overall detection architecture, which is separated into two processes:
training network design and inference network design. It also presents the
impact of using the first-stage score for the second-stage training and model
inference. Subsection 3.3 introduces the optimization process that involves
the proposal detection scores.

3.1 Detection errors reduction

The output of the detector includes a set of detections where each detection
contains at least the following: the rectangle that covers the object, the ob-
ject class, and the confidence level (see Appendix B for more details). The
detections are assigned to ground-truth objects and are judged to be true or
false positives by measuring the bounding box Jaccard index, also known as
Intersection over Union (IoU). In particular, one detection with a predicted
bounding box Bp is assigned to a ground-truth bounding box Bgt. The IoU is
calculated by the formula

IoU(Bp, Bgt) =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(3.1)
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where area denotes the area of the region, Bp ∪ Bgt is the union of the two
boxes, and Bp ∩ Bgt is their intersection. For a specific evaluation task, the
true positives detection must exceed a threshold (e.g., 50%). Hence, the de-
tection results depend on the location of the predicted bounding box, the
size of the box, and the predicted class. One image can contain several ob-
jects and each object corresponds with one ground-truth. The detector often
uses a sliding window scheme or a set of box proposals to predict the ob-
ject location, which leads to multiple detections for a single instance of an
object. However, only one detection (that with the biggest IoU) is chosen
as the correct detection; the others are considered false detections. In this
case, the detector often sorts the detection by confidence in decreasing order.
Unfortunately, the confidence and the IoU do not always correspond. For ex-
ample, correct detections with low confidence levels do not contribute to the
detection performance. Correct detections with high confidence but low IoU
are often considered false detections and, thus, reduce the overall detection
performance. Details of evaluation metrics for object detection are given in
Appendix A.

In the object detection task, the detection results usually contain numer-
ous false positive detections. There are two kinds of false positive errors:
poor localization (an object from the target category is detected with a mis-
aligned bounding box) and misclassification (the detected object matches
with other categories or background). For instance, in the SSD method (Liu
et al., 2016), more than half of false positive detections are due to misclassifi-
cation. Figure 3.1 shows examples of misclassification detection due to am-
biguity with background objects, similar objects or dissimilar objects. This
issue motivates the use of an additional classifier to reduce the number of
misclassification detections. In other words, we re-order the proposed detec-
tions. Note that recall (also known as the true positive rate) for each false
positive detection in Figure 3.1 is calculated by the number of true positives
with higher confidence than that detection divided by the number of real
positives in the dataset. Therefore, (1-recall) is the fraction of correct exam-
ples that are ranked lower than the given false positive.

The idea of using two stages to detect objects has been considered in nu-
merous studies (Girshick, 2015; Ren et al., 2015; Lin et al., 2017). These mod-
els rely on an external or internal region proposal generator (as the first stage)
to predict class-independent box proposals, allowing the box proposals to be
separated into objects and non-objects (the background). The second stage
is used to predict the class and offset the shifting proposal location to fit the
ground-truth bounding box.

In the proposed approach, we similarly use an object detector as a pro-
posal generator. However, the proposals extracted using this detector con-
tain not only box locations, but also class labels and scores. We call this de-
tector the proposal network. We then add a convolutional neural network,
called the classification network, to re-classify the extracted proposals. The
outputs of the two networks allow us to choose either the first-stage scores
or the second-stage scores as the final scores. However, we observed that
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aeroplane (sim): ov=0.00  1-r=0.19 bird (bg): ov=0.00  1-r=0.54 cow (sim): ov=0.00  1-r=0.21 dog (sim): ov=0.00  1-r=0.25

horse (oth): ov=0.00  1-r=0.32 bicycle (sim): ov=0.00  1-r=0.20 chair (bg): ov=0.05  1-r=0.68 motorbike (sim): ov=0.00  1-r=0.33

FIGURE 3.1: False positive detections on the Pascal VOC dataset by the Faster R-
CNN object detection model. The green bounding boxes depict the object location
inside an image. The text under the image indicates the detected class, and the
type of misclassification (sim: confusion with similar object, oth: confusion with
dissimilar object, bg: confusion with background), the overlap with the ground-

truth bounding box (ov), and the 1-recall value (1-r).

the second-stage scores after re-classification generally do not boost detec-
tion performance. We suggest two reasons for this unsatisfactory result: (i)
the classification network focuses on classifying objects based on their sim-
ilarities and differences, but lacks localization support, and (ii) there are no
connections between proposal confidence and classification confidence.

3.2 Overall architecture

The overall detection architecture is built on a two-stage deep neural net-
work. There are two distinct phases (see Figure 3.2): the training phase and
the testing phase. The training phase uses input images to fit the parameters
of model. In the object detection, the training dataset consists of input im-
ages, object labels, and object bounding boxes. The testing phase is used to
evaluate the final model fit on the training dataset. Each phase has three main
steps. This simple architecture is complicated in practice because increasing
model complexity often leads to over-fitting. The overall performance of the
model also depends on the accuracy of both model stages, the reliability of
the combination procedure, and the effectiveness of the training.

The first stage of the training phase is detection proposal training. Es-
sentially, this model component works as a region proposal network in two-
stage detectors. The first stage is called the proposal network and is trained
separately. The difference in our approach is that we utilize the output confi-
dences for the next stage of training or to test phase inferencing. The proposal
extraction of the first stage has some advantages. First, it can perform detec-
tion directly from the proposal network, thus allowing changes to the overall
model component. It is easier to test the impact of different network propos-
als on the total detection performance. Second, in the next step, the extracted
proposals can be re-sampled with different sampling strategies and different
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Detection proposal training

Re-sampling

Classifier training

(A) Model training phase

Detection proposals extraction

Proposal classification

Network combination

(B) Model testing phase

FIGURE 3.2: Overall object detection architecture. (A) The training phase includes
training the detection proposal, re-sampling the extracted proposals, and training
the second-stage classifier. (B) The testing phase includes object proposal prediction,

re-classifying the proposals, and combining the two stages.

datasets. For example, since the detection proposal training is more com-
plex than the classifier training, it could require an additional training dataset
whereas the next stage classifier needs to focus on the specific dataset. The
training samples for the classification network are also independent with a
selected proposal network. Finally, the proposal network works with a large
number of input windows (e.g., sliding windows, anchor windows, or RPN
windows), which can produce many false positives. The overall performance
of the model is very sensitive to the false positive rate of the classification
network. To address this problem, a soft rejection that re-orders the output
detections could help improve the detection results. In contrast to some clas-
sic object detection models, such as the VJ detector (Viola and Jones, 2001),
which used a detection cascade to reject sub-windows by a sequence of clas-
sifiers, our model does not eliminate any region proposals.

The increasing network complexity can cause a computational problem,
but the increasing cost is reasonable. In practice, for example, the proposal
network with the Pascal VOC dataset could extract thousands of proposals
for training, but needs fewer than 100 predictions for testing and can be ef-
fectively processed by simultaneously forwarding these proposals to a deep
network.
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The object proposals after re-sampling are fed to the classification net-
work for the classifier training. At this step, we can incorporate the con-
fidences of object proposals with classifier training samples (which only re-
quire the bounding boxes and classes) to create a better classifier. This combi-
nation process is a major topic of this thesis and is discussed more concretely
below.

Recent classifiers by CNN generally contain two components: one feature
extractor by multiple convolutional layers (and other layers) and a classifier,
such as linear SVM or softmax as the last layer. The details are presented in
the Appendix B. However, with sufficient training data, the SVM and soft-
max classifiers perform similarly. In our classifier model, we mainly use the
softmax classifier as it was proved to be the more accurate and reliable clas-
sifier in our experiments.

During the testing phase, the input image is fed to the proposal network.
The outputs of the proposal network are pre-processed and forwarded to
the classification network. Because the sizes of proposal boxes are differ-
ent, the boxes are resized to the classifier input size. The detection confi-
dences are computed by the combination functions using the first-stage and
second-stage confidences. The details of combination functions are described
in Chapter 4.

3.3 Overview of the training process

3.3.1 Multi-step training and end-to-end training

We train the first stage and the second stage separately. In the first stage,
both one-stage (such as SSD) and two-stage (such as Faster R-CNN) networks
could be used. The network requires pre-computed anchors that cover the in-
put windows with different scales and aspect ratios. An anchor is a region
proposal centered at the sliding window that is associated with a scale and
aspect ratio. For example, in RPN, the anchors are located in image grids
and are annotated with a binary class label (of being an object or not). The
anchor labels differ from box prediction as one ground-truth may assign pos-
itive labels to multiply anchors. The IoU threshold of the first stage could be
higher than that of object prediction. For example, with the Faster R-CNN
model (Ren et al., 2015), the RPN threshold is 0.7 and the detection threshold
is 0.5. Some anchors are not trained because the IoU is “ambiguous” between
positive and negative labels (e.g, the anchors with IoU from 0.3 to 0.5).

There are two approaches for training: training each component of the
model alternately or end-to-end training the whole model. In the first ap-
proach, we train the RPN and use the proposals to train the second compo-
nent (e.g., Fast R-CNN). The network fine-tuned by the second component
is then used to initialize the first component, and the process is repeated.
Although this approach is complicated, the performance is better than the
model that pre-computes RPN proposals. To perform the second training
approach, we need to define the joint training loss function, which is the sum
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of two multi-task loss functions. End-to-end training is easier to implement
and optimize.

3.3.2 Classifier training

Hard negative mining

After the proposal extraction step, the output contains many negative pro-
posals, especially when the number of anchors is large. To improve the stabi-
lization of the second-stage training, it is better to maintain the ratio between
the number of positive and negative samples. This sample preparation can
be done by choosing the top confidence level instead of using all negative
proposals. Another consideration a low number of positive proposals.

Training with confidence

The confidence score of the proposal network can be used to train the classi-
fication network. A new design with fully-connected layers of the classifica-
tion network concatenates the confidence of the first stage to form the output
of the network.
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Chapter 4

Two-stage object detection model

This chapter describes the two-stage object detection deep network. We in-
troduce the details of the proposed framework with each model component,
the network architecture, combination functions, and the effect on model per-
formance. The two-stage network not only improves detection performance
compared with the single-stage network, but can also be applied to various
datasets. We first define the network architecture in Subsection 4.1, where
we present two different designs. Subsection 4.2 presents details of the first
stage (proposal network). We consider several architectures for specific tasks.
In Subsection 4.3, we describe the second stage (classification network) and
the effect of this classifier on overall performance. Subsection 4.4 presents
details of combination functions that are used to combine the two network
stages. Experimental results are given in Subsection 4.5. To validate the effec-
tiveness of our proposed model, we performed detection on several datasets
with different model settings and evaluation metrics. We present extensive
result analysis and methods to optimize our model. Finally, we discuss these
results in Subsection 4.6.

4.1 Two-stage architectures

The two-stage network includes two main components: the proposal net-
work and the classification network. This section describes two proposed
model variants. For each, we show the key model design and the use. As
mentioned in Subsection 3.2, the two variants use the same basic design.
However, the presence of the first-stage confidence score in the second stage
is different.

Figure 4.1 shows the proposed architectures. Each model contains two
stages: the proposal network and the classification network. An input image
is fed to the proposal network (e.g., Faster R-CNN) to generate a set of object
proposals inside the image. The outputs of the first stage are the candidate
boxes and the corresponding scores for each category of these boxes. The
boxes are later used to sample images to fine-tune the classification network
(e.g., Inception-V3 Szegedy et al., 2016). In the second stage, we introduce
two combination strategies: post-combination and during-training combina-
tion (referred to hereinafter as trained combination). The details of combina-
tion methods are discussed in Subsection 4.4.
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FIGURE 4.1: Post-combination network and trained combination network. (A) The
post-combination network uses the first-stage confidence scores for combination af-
ter the second-stage training. (B) The trained combination network uses the first-

stage confidence scores for in both the second-stage training and after training.

These designs are inspired by the box-proposal-based object detectors.
The “sliding-window-based” method is a well-known approach that requires
classification for many sample windows, which are sampled by searching
for all possible rectangle insides a given image. For example, a single-scale
object detector requires about 104 − 105 windows per image for classifying.
Thus, the classifier needs to process a large number of samples. Moreover, for
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multi-scale detection, the number of windows grows by an order of magni-
tude. Thus, this strategy leads to inefficient computation. On the other hand,
since the appearance of an object in an image is rare, the ratio of positive
windows to negative windows is small. This unbalancing not only causes
an unstable training process, but also produces many false positive detec-
tions. The box-proposal-based method has been widely studied to address
this problem. The basic idea is that all objects of interest share common visual
properties that the detector can distinguish from the background. A proposal
extractor outputs a set of proposal regions in the given image that are likely to
contain objects. Comparing to the sliding-window-based method, the num-
ber of output rectangles is significantly reduced. This allows the object de-
tector to speed up the window classification and apply more sophisticated
classification methods.

Another benefit of the box-proposal-based method is that it enables the
use of number proposal controlling. The output of the proposal extractor con-
tains both the rectangles containing an object of interest and the scores of
those rectangles (also known as regions). These scores can be used for sort-
ing and selecting the proposals. In our proposed method, the output scores
are used for subsequent tasks such as training classifier and detection.

The detector is trained with a modified appearance distribution of both
positive and negative windows. The missed objects cannot be recovered in
the subsequent classification stage. Thus, when using the proposals for ob-
ject detection, the proposals should cover the whole object of interest in the
image. It is common to choose a high recall over the number of proposal
windows (or IoU) of ground-truth annotations.

4.1.1 Post-combination network

Figure 4.1a illustrates the architecture of the post-combination network. In
this design, the confidence scores of the proposal network are used after
training the classification network. We define a post-combination function to
connect the confidence scores of the first stage network and the second-stage
network. For some proposal networks, such as Faster R-CNN (Ren et al.,
2015), the scores of RPN are used to perform NMS on the proposal regions.
However, because RPN produces class-agnostic box proposals, the scores are
not used for further prediction after training the second stage. Compared to
the RPN box proposals, the outputs of the proposal network are significantly
reduced (typically, RPN extracts about 300 proposals per image to crop fea-
tures from a features map, whereas the proposal network extracts about 100
proposals per image to train the classification network.). Because the number
of training data is small for the classification network, we fine-tune the data
using the pre-trained network.

Regarding object location prediction, because the classification network
does not modify object locations, the detected object locations are maintained
with proposal network outputs. However, since we re-order the confidence
scores, there may be some detections that are eliminated, the detected rect-
angles may be changed through NMS processing.
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4.1.2 Trained combination network

Figure 4.1b shows the trained combination network design. Similar to the
post-combination network, it contains two main components: the proposal
network and the classification network. The major difference is the appear-
ance of class-specific confidence scores in the classification training process.
To perform the during-training combination, we define a trained combina-
tion module that inputs confidence scores of the proposal network and con-
catenates these with the last layers of the classification network.

Classification results often rely on the properties of object appearance in
cropped windows. The CNN classifier uses those windows and classes to
discover the information needed for classification during training. However,
we found that the first-stage confidence scores improved the classification
performance by training. For example, given an input window with a high
confidence score, there is a high possibility that the classification network
predicts the same class as the proposal network. In this case, the combination
function is modeled as a trainable function.

Because the input of classification has been changed, the design of the
classification network must also be changed. We describe these details in
Subsection 4.4. The idea of this design is inspired by a property of confidence
scores. We consider the confidence scores vector as a high-level image feature
so it can be concatenated with the last layers of the classification network to
form a new classifier.

Following the trained combination, a post-combination is performed after
detection by the classification network. Although classification scores could
be used directly for detection results, our experiment suggested that, de-
spite improving classification performance, the connection between the first
stage and the second stage after training is needed to boost overall detec-
tion performance. The process of post-combination is similar to the above
post-combination model (Subsection 4.1.1).

4.2 Proposal network

This section describes the details of the proposal network. The proposal net-
works are chosen according to a specific detection task of interest. In the first
stage of the proposed model, we choose a proposal network to extract the
set of object candidates. We primarily focus on Fast/Faster R-CNN and SSD
because many recent methods (He et al., 2017; Cai et al., 2016; He et al., 2016;
Lin et al., 2017) are based on these architectures.

4.2.1 Meta architecture

Over the past few years, the deep network has become the top performing
method for object detection. The first successful CNN models for object de-
tection were R-CNN (Girshick et al., 2014) and its successor Fast R-CNN (Gir-
shick, 2015). Both R-CNN and Fast R-CNN use a pre-computed proposal
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FIGURE 4.2: Proposal network with Faster R-CNN pipeline. The region proposal
network and detection network share the extracted image features. The output of
RPN is a set of class-agnostic boxes and the output of the detection network is a set

of class-specific boxes.

generator. However, modern methods show that it is possible to extract pro-
posals using a deep network such as in the works of Erhan et al., 2014; Ren
et al., 2015. These methods typically use a set of boxes in an image with dif-
ferent locations, scales and aspect ratios. These boxes are called “anchors” or
“default boxes”. Each anchor is used to train the detection network, which
predicts two things: a class-specific for that anchor and the offset to shift the
anchor to fit the ground-truth. To train these detectors, the network mini-
mizes a loss function which combines a classification loss and bounding box
regression loss. An anchor is needed to encode for training by a transform
function. For example, in Faster R-CNN, the transform function is modeled
as a linear function of cropped features from the image. Such a function can
then be learned. The details of anchor box encoding are described in the
Appendix C.

The choice of anchor boxes strongly impacts detection performance. In
recent works, such as SSD, the anchors (the default boxes in the paper) are
regularly sampled across the image at different scales and aspect ratios. The
position of each box relative to its corresponding feature map cell is fixed.
This approach resembles the sliding window method, but in contrast, it al-
lows the detector to share parameters between different object viewpoint pre-
dictions.

In the next sections, we describe the parameter choices for each meta-
architecture and adapt the designs according to specific tasks.

4.2.2 Faster R-CNN

In Figure 4.2, the image is processed through two components, RPN and
the detection network. The output of RPN (box proposals) is used to crop
the features from the intermediate feature map. These cropped features are
fed to the remainder of the feature extractor for class and box-refinement
prediction.
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FIGURE 4.3: Anchor box settings for each sliding window. The anchor is located at
the center of the window. We use 3 scales (128× 128, 256× 256 and 512× 512) and 3
aspect ratios (1 : 1, 1 : 2 and 2 : 1) to create 9 anchor boxes for each sliding window.

Anchor boxes

The anchor boxes are taken at each sliding window location across the image.
We keep the default configuration of the anchor as in Faster R-CNN. There
are 9 anchors at a position in an image. Figure 4.3 gives an example of the
anchor boxes. In our setting:

• Each color of box represents a box size: 128× 128, 256× 256 and 512×
512.

• For each colored box, the ratio of height and width is one of the follow-
ing 1 : 1, 1 : 2 or 2 : 1.

The number of the anchor position (the center point of anchor) depends on
the sliding window stride. The selection of aspect ratio depends on the task
of interest. For example, with people detection, the object rarely appears
within a very short bounding box. The above aspect ratios and sizes work
well with the Pascal VOC and COCO datasets. The anchor design has the
important property of translation invariance. That is, the detector is able to
predict the object proposal independent of the object location in a given im-
age. Another advantage of the anchor design is that it presents a scheme for
multi-scale object detection. Compared with image/feature pyramids object
detection, the pyramid of anchors is more cost-efficient. The pyramid of anchors
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is built on a single scale of images and feature maps, and it uses a single size
of filters.

Baselines

In this thesis, a network baseline (or network backbone) is a part of the net-
work that is reused to construct the feature extractors. We use a high-quality
feature extractor, such as Resnet-101 (He et al., 2016) or Inception-Resnet-V2
(Szegedy et al., 2017), which are used in state-of-the-art ImageNet ILSVRC
2012 classification and detection tasks, as a baseline.

In the Resnet-101 network, we extract features from the last layer of the
conv4 block. The Region of Interest (RoI) is cropped to 14× 14, and a max-
pooling layer is then used to reduce the feature size to 7× 7. Intuitively, using
a smaller window stride should give better results; thus, the output stride of
Resnet-101 network is modified to 16 (the original output stride of Resnet-
101 is 32). This modification is done by changing the stride of conv5_1 layer
from 2 to 1.

Inception-Resnet-V2 mixes the residual design with Inception networks
(Szegedy et al., 2015). We implement Inception-Resnet-V2 on TensorFlow
(Abadi et al., 2016) and extract features from the Mixed_6a layer. The features
are cropped by the RoI, resized to 17× 17 and maxpooled with a stride of 1.

Box regression

The object detection network needs to simultaneously predict the object classes
and object locations. Since the object classes are classified by predicting a dis-
crete class label though a classifier (e.g.,CNN-softmax, CNN-SVM), the box
locations are predicted by estimating a continuous quantity. The box loca-
tions are encoded to bounding box targets before training. We describe the
box encoding method in Appendix C.

Typically, one training bounding box (x, y, w, h) is encoded into a bound-
ing box target t as follows:

tx = (x− xa)/wa, ty = (y− ya)/ha

tw = log(w/wa), th = log(h/ha)
(4.1)

Similarly, a ground-truth box (xa, ya, wa, ha) is encoded as follows:

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha

t∗w = log(w∗/wa), t∗h = log(h∗/ha)
(4.2)

The box regressor minimizes the loss function

Lbox(t, t∗) = SmoothL1(t− t∗) (4.3)

where

SmoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(4.4)
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Region of Interest Pooling

After RPN, the proposal boxes are different sizes, resulting in different-sized
feature maps. In order to train the next stage, the RoI pooling (or spatial
pooling) layer is used to extract feature maps as the same size. The layer has
two inputs:

• Fixed size feature maps obtained by the feature extractor from previous
layers. Note that the feature maps are shared between RPN and the
detection network instead of using another separate feature extractor.
The shared feature maps not only significantly reduce the computation
cost, but also enable joint training between the model components.

• A matrix of size N × 5, where N is the number of RoI, and four coordi-
nates, which represent the proposal regions and an image index.

The dimension of the RoI pooling output does not depend on the size of re-
gion proposals nor the size of input feature maps. The RoI pooling layer can
improve the processing speed by using same input-computed feature maps
for all proposals in an image while maintaining high detection accuracy.

There are several implementations of RoI pooling. The first idea is the
work of R-CNN, which pools the portion of the feature map inside the pro-
posal into a fixed-size feature. However, the network needs to forward each
proposal and write the output feature to the disk for further use without
sharing the feature maps. SPPNet (He et al., 2014) addresses this problem
by sharing computations, after which, multiple output features are concate-
nated as in spatial pyramid pooling. Fast R-CNN uses a simpler but higher
detection quality approach where the method uses only a one-level pyra-
mid level. Other RoI pooling methods include Spatial Transformer Networks
(Jaderberg, Simonyan, Zisserman, et al., 2015), differentiable cropping (Dai,
He, and Sun, 2016), and the attention model (Gregor et al., 2015). In this
thesis, we use the “crop and resize” layer in Tensorflow (Abadi et al., 2016),
which uses bilinear interpolation to crop an image feature map into a fixed-
size feature. Unlike the Fast/Faster R-CNN method, we disable the back-
propagation process with respect to box coordinates due to instability during
training.

Training details

Ren et al., 2015 proposed four-step alternating training that first trains RPN
and uses the proposals to train Fast R-CNN. The Fast R-CNN network is then
used to initialize RPN, and the process is repeated. Instead of using four-step
alternating training, we adopt an end-to-end joint training of the RPN and
Fast R-CNN components for convenience. The multi-task loss on each RoI is
the sum of the cross-entropy loss of classification and the box regression loss
L(p, u, t, t∗) = Lcls(p, u) + λ[u ≥ 1]Lbox(t, t∗), where Lcls(p, u) = −log(pu)
is the cross-entropy loss for true class u. The tuple t = (tx, ty, tw, th) is the
predicted bounding box regression offsets, and t∗ = (t∗x, t∗y, t∗w, t∗h) represents
the ground-truth. The indicator function [u ≥ 1] is equal to 1 when u ≥ 1,
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otherwise 0. In our experiment, we set the balance loss weight λ = 1. We use
the NMS with a threshold of 0.7 IoU and 0.6 IoU for RPN and Fast R-CNN,
respectively.

4.2.3 Single Shot MultiBox Detector (SSD)

Feature extractor

Box regression

Object classification

Multi scale feature maps detector

FIGURE 4.4: Proposal network with SSD pipeline.

For training, the SSD model only needs an input image and available
ground-truth bounding boxes (manually labeled bounding boxes that spec-
ify objects in the image). The pipeline of SSD is depicted in Figure 4.4. The
image is fed to a feature extractor network (e.g., VGG16) and the detection
network predicts the object classes and bounding boxes directly from the
generated anchors (default bounding boxes). The detection network adds
more convolutional layers with the spatial resolution reducing by a factor of
2. It performs the prediction at each additional layer.

Compared with two-stage detectors, the model presents a different ap-
proach to detecting objects using a single-stage network that directly pre-
dicts classes and anchor offsets without requiring second-stage object class
prediction. Advantages of this design include:

• Multi-scale feature maps for detection: the additional layers at different
feature map locations and the different sizes of these layers allow the
SSD to predict an object at multiple scales.

• SSD runs faster than two-stage networks because it does not require
RPN for box proposals.

Details of design

With the SSD model, we use VGG16 (Simonyan and Zisserman, 2014) pre-
trained by the ImageNet (Deng et al., 2009) dataset as the baseline network,
which is a simple and widely-used design. Figure 4.5 depicts the details of
the SSD model using the VGG16 baseline. The VGG16 baseline network is
modified by converting the fc6 and fc7 layers to convolutional layers, which
also reduces the number of outputs to 1,024. All dropout layers (Srivastava
et al., 2014) and the fc8 layer are removed from the original VGG16 network.
We add five additional output layers (conv6_2, conv7_2, conv8_2, conv9_2,
and conv10_2) to predict the locations and scores of objects. The model is
then finely tuned using the COCO dataset (Lin et al., 2014) for the COCO
test-dev detection task.
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TABLE 4.1: Output layer and anchor settings for the VGG16
baseline. Aspect ratio is the ratio of the width to the height of

an anchor.

Output layer Aspect ratio (w/h) min max
conv4_3 1/2, 1, 2 20.5 51.2
conv7 1/3, 1/2, 1, 2, 3 51.2 133.1
conv6_2 1/3, 1/2, 1, 2, 3 133.1 215.0
conv7_2 1/3, 1/2, 1, 2, 3 215.0 297.0
conv8_2 1/3, 1/2, 1, 2, 3 297.0 378.9
conv9_2 1/3, 1/2, 1, 2, 3 378.9 460.8
conv10_2 1/2, 1, 2 460.8 542.7

Anchor boxes

Generating anchor boxes in SSD is similar as in Faster R-CNN. However, the
anchor boxes are generated at every output of the detection network. This
multiple-level anchor generation allows the network to be set up at different
scales and aspect ratios to achieve different outputs. Thus, the anchor size
does not need to correspond to the receptive field size of each layer. Table 4.1
shows the details of the aspect ratio setting for each output layer where min
and max are the values used to compute anchor box size. Following SSD, the
scale of anchor boxes for each output layer is computed as

sk = smin +
smax − smin

m− 1
(k− 1), k ∈ {1, ..., m} (4.5)

where m is number of output layers, smin = 0.2, smax = 0.9. An anchor with
scale s′ =

√
sksk+1 is also added to list of anchor boxes.

The anchor boxes cover a large number of object sizes and shapes by com-
bining the predictions of all output layers.

Training details

Similar to the Faster R-CNN model, in this SSD proposal network detection,
we train the network by minimizing the following loss function, which is the
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sum of the cross-entropy loss of classification and the box regression loss:

L(p, u, t, t∗) =
1
N
(Lcls(p, u) + λ[u ≥ 1]Lbox(t, t∗)) (4.6)

where N is the number of matched anchor boxes. In the experiment, the
weight λ is set to 1.

4.3 Classification network

4.3.1 Baseline networks

After extracting the set of object proposals from an image, the number of false
positive detections is still large because of the sliding window scheme. We
use these proposals to train the second stage as a classifier. In the experiment,
we use several classifiers, such as Resnet-101 (He et al., 2016), Inception-V1
(Szegedy et al., 2015) and its successor Inception-V3 (Szegedy et al., 2016).
All of these classifiers are pre-trained on ImageNet, which contains 1.2 mil-
lion training images. The details for each baseline network are described as
follows:

• Inception-V1: We remove the final fully-connected layers (the final log-
its (classifier) layers) of the original Inception-V1 network. The input
size of Inception-V1 is 224 × 224. We add three fully-connected lay-
ers at three network outputs (one for prediction and two for auxiliary
classifiers at intermediate layers). We do not use auxiliary branches of
Inception-V1 to fine-tune the classification network.

• Resnet-101: We faithfully follow the design of Resnet-101, which ap-
plies batch normalization after every convolutional layer. We use the
feature extraction after the network’s block4. The input size is 224× 224.

• Inception-V3: Since Inception-V3 is an update of Inception-V1, we con-
tinue to use the auxiliary logits after the Mixed_6e layer. The network
input size is 229× 229.

The pre-trained model weights only affect the initialization of the model. For
small datasets, the model typically trains a subset of layers to avoid over-
fitting. In the experiments, by sampling multiple proposals per ground-truth,
the classification network is able to fine-tune all layers.

4.3.2 Data sampling

Although the second stage is trained using the same dataset as the proposal
network except for the Caltech pedestrian dataset (Dollar et al., 2012), the
method of sampling data is different from the first stage. We first eliminate
some “bad” proposals (boxes with very low confidence scores or boxes that
are too small). Each proposal is then matched with ground-truth boxes. We
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calculate the IoU of these object proposals with the available ground-truth in
an image. A proposal p is a positive sample if α∗ ≥ 0.5, where

α∗ = max
gi∈G

IoU(p, gi) (4.7)

and G = {(gi, li)}M
i=1 is the set of ground-truth bounding boxes where gi =

(gi
x, gi

y, gi
w, gi

h) specifies the top left coordinates of the ground-truth box to-
gether with its width and height, li is the ground-truth class, and M is the
number of ground-truth boxes in the given image. Otherwise p is a negative
sample if α∗ < 0.5. In the case of a positive sample, the class of proposal p is
li∗ where

i∗ = argmax
i∈{1,...,M}

IoU(p, gi) (4.8)

In order to train a more stable classification network, we maintain a con-
stant ratio between the number of positive samples and the number of neg-
ative samples. (In our experiments, the ratio of positive to negative samples
is 1:3.)

4.3.3 Preprocessing

The classification network is fine-tuned from a pre-trained model. The pro-
posal regions from the first stage are used to crop the input images, and then
resized using bilinear interpolation to the size of 256× 256 for Inception-V1
and Resnet-101, and 340× 340 for Inception-V3. We then randomly crop to
network input size for training (at the test time, we use center cropping). The
training samples are randomly flipped horizontally1 with 0.5 probability, and
are subtracted from the dataset image means.

In the experiment, we preserve the aspect ratio image resizing before ran-
domly cropping as in AlexNet (Krizhevsky, Sutskever, and Hinton, 2012).
However, we observed that training the classification network was unstable.
We think this might be due to the variables of aspect ratios from extracted
proposals.

4.4 Combination functions

As shown in Figure 4.1, in the proposed model architectures, our combina-
tion module uses post-combination and trained combination. These com-
bination procedures are key techniques to strengthen detection by using an
object detector as a proposal network.

1The intuition behind flipping an image is that an object should be equally recognizable
as its mirror image (in the left/right direction). Columns are preserved, but appear in a
different order than before.
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4.4.1 Post-combination

The post-combination network is depicted in the Figure 4.1a. In this ap-
proach, the combination occurs after the training of two stages. The clas-
sification network outputs the scores of object proposals. The final detec-
tions can use either the proposal scores or the classification scores. How-
ever, we observed that standalone classification scores do not improve de-
tection performance. For large and clear objects, the proposals are usually
well-detected, and the detection scores are high. On the other hand, deep-
learning-based detectors tend to be weak for small objects due to insuffi-
cient resolution of feature maps for detecting small instances (Zhang et al.,
2016). In this case, the output detection scores are usually low. To address
this problem, we propose a method to maintain good detections and en-
hance weak detections by combining two detection scores. For each output
of the proposal network (L, sp), L = (x1, x2, y1, y2) is the location of the box,
sp = (sp0 , ..., spN) is the score of the proposal network, and sc = (sc0 , ..., scN) is
the score of the classification network. Further, i∗ = argmaxi∈{0,...,N} spi and
j∗ = argmaxj∈{0,...,N} scj are the detected classes of the proposal network and
the classification network, respectively. The final detection of the combined
network is (L, si∗ , i∗) with

si∗ = f (sp, sc) (4.9)

where f is a combination function. We evaluate several combination func-
tions. The combinations are based on the value of two scores and the agree-
ment of two detection classes. We consider a mean function ( f1) and a multi-
plication function ( f2), defined as follows:

f1(sp, sc) =
(spi∗ + sci∗ )

2
(4.10)

and
f2(sp, sc) = (spi∗ ∗ sci∗ ) (4.11)

and we define f3 as follows:

f3(sp, sc) =

{
f1(sp, sc ∗ c) if i∗ = j∗ and spi∗ < d
f1(sp, sc) otherwise

(4.12)

where c > 1 is the boosting weight and d < 1 is the high-score threshold.
The key idea behind f3 is to encourage detections with the same detected

classes that have higher confidence scores between the proposal network and
the classification network. However, the scores of the proposal network for
these cases are not good enough (i.e., they are lower than the threshold score
d). Note that, to increase the final score, it is possible to boost the first-stage
score (sp), but we found that the experimental results of boosting the first-
stage score are worse than that of boosting the second-stage score (sc).
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FIGURE 4.6: Classification network with trained combination. The output is an (N +
1)-way classification layer where N is the number of interest categories and plus 1

indicates the background.

4.4.2 Trained combination

In this approach, the combination occurs both after training the classification
network and during the training classifier process. Given a proposal P =
(P1

x , P1
y , P2

x , P2
y ), the output of the last layer in the classification network is

denoted by φl(P). By adding the new combination module in Figure 4.1b,
the output of the classification network becomes ŵ?(φl(P), sp), where sp is
the score vector, and ŵ? are trainable parameters. In this case, for a true class
u, the training loss is

Lcls(p, u) = −log(pu) (4.13)

where
p = (p0, ..., .pN) = fcls(ŵ?(φl(Pi), sp)) (4.14)

is computed as softmax ( fcls) over the (N + 1) outputs of the last fully-connected
layer. After the second-stage training, we apply the average score to generate
the final score.

The implementation of the combination module is depicted in Figure 4.6.
We construct a 1 × 1 × (N + 1) vector from the score of the proposal net-
work, where N is the number of interest categories and plus 1 indicates the
background. This vector is concatenated with extracted features from the
last layer of the feature extractor network, and is then connected to a fully-
connected layer. The computation of this new trained combination module is
nearly cost-free in comparison to training the original classification network.

4.4.3 Implementation details

The new fully-connected layers are initialized with Xavier initializer (Glo-
rot and Bengio, 2010), which assigns weights by a Gaussian distribution and
ensures the same variance for inputs and outputs. We continue using the
stochastic gradient descent (SGD) to train CNN parameters. The base learn-
ing rate and learning rate decay policy are set according to the specific task,
as will be detailed in Subsection 4.5.

We keep a maximum of 100 samples per image for training, where sam-
ples are selected base on their detection scores by the proposal network.
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TABLE 4.2: Evaluation settings for the Caltech benchmark.

Height (pixels) Occlusion level
All 20− in f 0− 80%
Reasonable 50− in f 0− 35%
Near scale 80− in f 0%
Large scale 100− in f 0%
Medium scale 30− 80 0%
Far scale 20− 30 0%
No occlusion 50− in f 0%
Partial occlusion 50− in f 1− 35%
Heavy occlusion 50− in f 35− 80%
Small objects 30− 50 0− 35%

Some samples highly overlap with each other. To avoid redundancy, we
adopt NMS on the sample regions based on their scores. An IoU threshold
of 0.7 is fixed for NMS.

4.5 Experimental results

The proposed method should be tested carefully on appropriate datasets to
prove its potential for real-world applications. In this section, we present
experimental results for three object detection datasets: Caltech pedestrian
(Dollar et al., 2012), Pascal VOC (Everingham et al., 2010), and COCO (Lin
et al., 2014).

While the experiments mainly showed the benefit of using a two-stage
network detector, we also obtained results that were comparable to those ob-
tained using other cutting edge detection methods. We denote the two-stage
model used in various experiments as follows: SSD+Inception-V1+M indi-
cates that the proposal network is SSD, the baseline of the classification net-
work is Inception-V1, and the method of combination is multiplication score
f2 (M). Other notation of the combination method includes the mean func-
tion f1 (A), the combination with threshold function f3 (T), and the trained
combination (TC).

4.5.1 Caltech pedestrian detection

We first apply the proposed models to a single-category dataset, namely, the
Caltech pedestrian dataset. The dataset consists of approximately 1,900 indi-
vidual pedestrians, which are annotated with approximately 350,000 ground-
truth annotations. The number of images in the test set is 4,024. The Caltech
evaluation benchmark uses the log-average miss rate to summarize the de-
tector performance. The average miss rate is computed by averaging the miss
rate for nine false positives per image (FPPI) in log space from 10−2 to 100.
Evaluation is performed using several different settings, listed in Table 4.2,
based on the height and occlusion level of pedestrians.
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TABLE 4.3: Miss rates of detection using the proposal network (SSD 512) and the
classification network, and combination scores for the Caltech test set.

All Reasonable Near Medium Far No occ. Partial occ. Heavy occ. Small objects
Proposal network (SSD Liu et al., 2016) 57.74 17.56 1.47 43.11 79.61 15.59 27.89 69.02 48.86
Classification network (Inception-V1) 55.38 17.63 1.59 38.27 77.71 15.53 30.34 70.08 45.07
SSD+Inception-V1+A 52.02 14.59 1.44 34.77 77.26 12.74 26.01 68.34 42.05
SSD+Inception-V1+M 52.30 14.97 1.44 35.33 77.59 13.11 25.66 67.85 42.21
SSD+Inception-V1+T 51.70 13.89 1.15 34.30 74.92 11.75 27.29 66.59 41.56
SSD+Inception-V1+TC 55.11 15.28 1.33 38.64 79.67 13.08 28.19 68.62 47.06

In the work of Zhang et al., 2016, it is argued that, despite particularly
successful general object detection, Faster R-CNN (as a stand-alone detec-
tor) has limited success for pedestrian detection. For this reason, we use an
SSD with a VGG16 baseline as the proposal network for this experiment. In
the network settings, the aspect ratios of the default bounding boxes (the an-
chors) are {1/3, 1/2, 1, 2, 3}. For output from the conv4_3 layer, because of
the different feature scales, an L2 normalization layer (Liu, Rabinovich, and
Berg, 2015) is added to scale down the feature norm to 20.

To fine-tune the proposal network, we used a pre-trained SSD from the
COCO dataset because the COCO dataset is more similar to the Caltech
dataset than ImageNet (Deng et al., 2009). Since Caltech is a relatively small
dataset, we adopt a data augmentation strategy by adding more training im-
ages from other pedestrian datasets: the KITTI dataset (Geiger, Lenz, and Ur-
tasun, 2012), the TUD-Brussels dataset (Wojek, Walk, and Schiele, 2009), and
the ETH pedestrian dataset (Ess et al., 2008). This addition of data increases
the number of images by 26% compared to the Caltech dataset alone. We
trained a model with a base learning rate of 10−4, a momentum of 0.9, and a
weight decay of 0.0005. The total number of training iterations is 240,000. We
used Inception-V1 (Szegedy et al., 2015) to classify pedestrian candidates ex-
tracted from the proposal network, where the initial learning rate was 10−4.

We compare the performance of the proposal network (Liu et al., 2016),
the classification network (Szegedy et al., 2015), and combinations of the two
networks. Table 4.3 shows the experimental results. The classification net-
work performs better than the proposal network for the “all”, “medium”,
and “small objects” settings by 2.36%, 4.84%, and 3.79%, respectively. How-
ever, the performance of the classification network is inferior for “near” ob-
jects. This indicates that Inception-V1 is more robust than SSD for small
pedestrian classification. Moreover, the performance of the classification net-
work for occluded pedestrians (“partial occ.” and “heavy occ.”) is worse
than the proposal network. This might be because the SSD model’s classifi-
cation task is supported by the box prediction task, which allows the model
to better predict the objects of unusual aspect ratio (occluded objects). The
results in Table 4.3 show that the miss rates for every setting are reduced for
all combination functions compared with the proposal network. With combi-
nation function f3, the performance is slightly improved (0.32%) for the near
scale and significantly improved for smaller objects. The miss rate reductions
for the “small objects” and “medium” settings are 7.30% and 8.81%, respec-
tively. Overall, the mean combination f1 performs slightly better than the
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TABLE 4.4: Miss rates of detection using the proposed method and state-of-the-art
pedestrian detection methods on the Caltech test set. The proposed model outper-

forms the other methods for “small”, “far”,“near” and “large” pedestrians.

All Reasonable None Partial Heavy Near Medium Far Medium Small Large
LDCF++ 67.24 14.98 12.76 33.11 75.74 5.25 58.46 100 58.46 83.22 2.15
RPN+BF 64.66 9.58 7.68 24.23 74.36 2.26 53.93 100 53.93 79.83 1.18
MS-CNN 60.95 9.95 8.15 19.24 59.94 2.6 49.13 97.23 49.13 70.34 1.99
F-DNN 50.55 8.65 7.10 15.41 55.13 2.96 33.27 77.47 33.27 44.86 1.70
Our method (T) 51.73 14.07 11.89 27.36 66.56 1.15 34.44 74.95 34.44 41.43 0.00

multiplication combination f2.
We also compared the proposed model with state-of-the-art pedestrian

detection methods in Table 4.4. For the overall configuration (“all” setting),
our proposed method outperforms MS-CNN (Cai et al., 2016) method and is
close to the result of F-DNN (Du et al., 2017), which uses pixel-wise semantic
segmentation for reinforced detection. However, our method is simpler and
faster than F-DNN, which requires 2.48 sec per image (Du et al., 2017). For
large-size object detection (“large” and “near” settings), the two-stage net-
work is the most accurate with respective miss rates of 0.00% and 1.15%. For
small-size object detection (“small” and “far” settings), the proposed method
also outperforms all the state-of-the-art methods by a large margin. For in-
stance, the miss rate at “small” setting is 41.43%, which is 3.43% better than
the next most accurate method (F-DNN). At the “far” setting, some methods,
such as RPN+BF (Zhang et al., 2016) and LDCF++ (Ohn-Bar and Trivedi,
2016), were unsuccessful in detecting pedestrians (miss rate of 100%). Our
method had the smallest miss rate (74.95%), which indicates the effective-
ness of the proposed method in detecting small-size pedestrians.

Note that a miss rate of 0.00% does not mean that the method is perfect.
In Figure 4.7, we show the receiver operating characteristic (ROC) curves on
the Caltech test set at different settings. The ROC curve is created by plotting
the true positive rate (TPR) against the false positive rate (FPR) at various
threshold settings. However, performance is assessed as the average miss
rate at nine false positives per image (FPPI). The ROC curve is used rather
than the precision-recall curve because in certain applications, such as auto-
driving, there is an upper limit on the acceptable FPPI rate independent of
pedestrian density (Dollar et al., 2012).

Detection examples

Figure 4.8 shows some detection examples using the Caltech pedestrian de-
tection test set. We used the combination with threshold to train data using
several pedestrian datasets, including KITTI, TUD-Brussels, ETH pedestrian
and Caltech itself. Images show the bounding boxes and detection scores
(normalized). We select images with pedestrians in various scales. Some im-
ages contain crossing pedestrians for easy viewing, people riding bicycles are
annotated as pedestrians. Note that in the Caltech pedestrian dataset, most
frames contain very few people.
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(A) Miss rate at large scale.
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(B) Miss rate at near scale.
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(C) Miss rate at small scale.
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(D) Miss rate at far scale.

FIGURE 4.7: Caltech test ROC. We test the model with different evaluation settings.
The figure shows the average miss rate of the proposed model and state-of-the-art

pedestrian methods.

4.5.2 Pascal VOC object detection

We used the Pascal VOC (Everingham et al., 2010) dataset to evaluate the
proposed method. The Pascal VOC 2007 test set has 4,952 images belonging
to 20 categories for the object detection task. We performed data augmenta-
tion by adding Pascal VOC 2007 trainval set and Pascal VOC 2012 trainval
set (referred to herein as Pascal VOC 2007+2012), resulting in approximately
16k images for training. We chose the Faster R-CNN architecture to extract
the set of object proposals. We first fine-tuned the proposal network on the
COCO dataset (Lin et al., 2014) for 80 categories of the object detection task.
The detector was then fine-tuned on Pascal VOC 2007+2012 and tested on
the Pascal VOC 2007 test set.

During training, we used an SGD (Krizhevsky, Sutskever, and Hinton,
2012) optimizer with a batch size of 1, a momentum of 0.9, and a weight de-
cay of 0.0005. The images were resized to 600× 1, 024, and other preprocess-
ing steps, such as means subtraction and random flipping, were also applied.
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FIGURE 4.8: Detection examples on the Caltech test set. Detected pedestrians with
bounding boxes and score (normalized). Note that our approach can detect pedestri-
ans in some difficult conditions, such as small scale (first row) or blurred pedestrians

(2nd row, 2nd column).

With a base learning rate of 0.003, we trained the proposed model for 200,000
iterations.

Table 4.5 shows the results for the Pascal VOC 2007 test set. We use Faster
R-CNN as the proposal network. In this test, the baseline is Resnet-101 (He
et al., 2016) (pre-trained on ImageNet), and the second stage uses Resnet-101
as the classification network. We observed that the combination methods
improved detection performance for all classes. The two-stage model with
trained combination has a better mean average precision (mAP) than the
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TABLE 4.5: Individual average precision (%) on the Pascal VOC 2007 test set. All
models were trained with the COCO dataset and then fine-tuned with the Pascal
VOC 2007+2012 training set. We then retrain Faster R-CNN1 (Ren et al., 2015) (with

Resnet-101 as the baseline) to fine-tune the classification network.

Group Class Faster R-CNN1 A M T TC

vehicles

aero 80.0 81.0 81.0 81.0 81.3
bike 80.2 80.2 80.2 80.3 80.6
boat 67.7 70.5 70.6 70.7 72.8
bus 79.7 81.1 81.2 81.3 81.2
car 86.6 88.7 88.7 88.6 88.6

mbike 79.3 79.9 79.8 80.2 80.1
train 78.6 78.7 78.7 78.7 79.2

animals

bird 77.2 78.3 77.9 78.3 78.8
cat 87.0 87.5 88.4 87.4 87.0

cow 83.5 86.3 85.8 86.2 86.7
dog 84.6 86.0 86.3 86.0 86.9

horse 86.8 87.3 87.6 87.6 88.3
sheep 75.7 78.9 78.6 78.8 78.9
person 77.1 78.6 78.7 78.8 79.9

furniture

bottle 65.4 68.3 68.2 67.9 69.1
chair 62.4 63.5 63.9 63.9 64.7
table 73.3 74.0 73.9 74.2 74.8
plant 40.3 43.5 43.5 43.7 46.5
sofa 77.9 80.8 80.5 81.3 82.6
tv 69.6 71.0 71.2 71.1 71.4

mAP 75.6 77.2 77.2 77.3 78.0

proposal network (Faster R-CNN) by 2.4%. Comparing different combina-
tion methods, the mean (A) and multiplication (M) combinations are almost
equal with mAP of 77.2%. The combination with threshold function (T) per-
forms slightly better than the mean and multiplication functions. The trained
combination method has better results than other combination methods for
most classes and its overall result is a mAP of 78.0%. The proposed method
shows large improvements for difficult object classes, such as plant, with a
maximum mAP gap of 6.2%. This indicates that training the classifier with
the additional output from the proposal network (the detection scores) im-
proves the performance for small objects by a good margin.

Table 4.6 shows the results of the second test with Faster R-CNN, which
has a better baseline Inception-Resnet-V2, and uses Inception-V3 as the second-
stage network. Because the Inception-Resnet-V2 baseline is more accurate
than the Resnet-101 baseline in ImageNet ILSVRC, the performance of the
proposal network using Inception-Resnet-V2 is also better than that using
Resnet-101 as the baseline. The combination with threshold and trained com-
bination achieved the highest performance for most classes. With trained
combination, the mAP surpasses Faster R-CNN by 1.2%. Some categories
are greatly improved (e.g., plant: 2.4%, bottle: 2.5%, boat: 3.4%). As in the
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TABLE 4.6: Individual average precision (%) on the Pascal VOC 2007 test set. All
models are trained with the COCO dataset and then fine-tuned with the Pascal
VOC 2007+2012 training set. We then retrain Faster R-CNN2 (Ren et al., 2015) (with

Inception-Resnet-V2 as the baseline) to fine-tune the classification network.

Group Class Faster R-CNN2 A M T TC

vehicles

aero 87.1 87.5 87.4 87.7 88.3
bike 88.6 88.9 88.9 88.8 89.1
boat 74.4 76.5 76.4 76.8 77.8
bus 87.5 88.5 88.4 88.7 88.8
car 88.7 89.2 89.2 89.3 89.3

mbike 86.8 87.4 87.4 87.4 87.5
train 87.3 87.1 87.1 87.2 87.5

animals

bird 86.4 86.6 86.7 86.7 87.2
cat 78.2 79.6 79.6 79.5 79.0

cow 87.6 88.5 88.5 88.9 88.7
dog 88.0 86.4 86.4 87.0 88.4

horse 89.3 89.6 89.6 89.9 89.8
sheep 78.5 79.6 79.6 79.9 79.3
person 86.6 86.9 86.9 86.9 87.2

furniture

bottle 74.7 77.3 77.2 77.2 77.2
chair 65.3 66.9 66.9 67.1 67.1
table 76.1 75.5 75.6 75.7 76.1
plant 57.9 57.4 57.2 58.1 60.3
sofa 78.6 78.5 78.4 79.0 80.5
tv 78.6 79.6 79.7 79.9 80.3

mAP 81.3 81.9 81.8 82.1 82.5

previous experiment, the mean combination and multiplication combination
are almost equal with only 0.1% difference in mAP

To understand our network performance in detail, we used an error di-
agnosing tool from the work of Hoiem, Chodpathumwan, and Dai, 2012. In
Figure 4.9 and Figure 4.10, we show the sensitivity and impact of different
object characteristics on the Pascal VOC 2007 test set. The black dashed lines
indicate overall APs. The impact is the difference between best and overall,
and the difference between best and worst indicates sensitivity. In general,
the two-stage model is more robust than Faster R-CNN to different sizes and
aspect ratios.

Error analysis

Figure 4.11 shows the distribution of the top-ranked false positive types. We
classify objects into three groups: animals (all animals + person), furniture,
and vehicles. Compared with the proposal network results shown in Figure
4.11a, a higher proportion of the error in Figure 4.11b results from poor local-
ization (a duplicate detection or a detection with IoU overlapping the correct
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FIGURE 4.9: Sensitivity and impact of different object characteristics on the Pascal
VOC 2007 test set. The black dashed lines indicate overall APs. Some abbreviations:

XS=extra-small; S=small; M=medium; L=large; XL =extra-large.

class between 0.1 and 0.5) of the two-stage detector. Since we do not mod-
ify the proposal localization, this indicates that the combination results are
better than the proposal network results for reducing misclassification (Sim,
Oth, and BG). The vehicles group shows significant improvement with the
combination method in terms of reducing misclassification errors. On the
other hand, the animals group shows only a slight improvement.

Further analysis

As discussed in Section 4.4, we proposed Equation 4.12 to encourage detec-
tions that have matched labels between the proposal network and the clas-
sification network. In our experiment, we set c = 1.4 as a constant boosting
weight. The parameter d denotes the high-score threshold. Figure 4.12 shows
the effect of choosing the threshold. We try different high-score thresholds d
from 0.4 to 0.9 and find that the performance peaks at 0.6, indicating that
beyond that value (0.6), the first stage confidence is sufficiently good and
the final confidence does not require further boosting. On the other side, if
the high-score threshold is below that value, the matching labels between
two networks are not reliable enough to correctly predict labels. Note that
the performance of two-stage network drops quickly with high score thresh-
old values above that value 0.6. This result also indicates that boosting just
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FIGURE 4.10: Sensitivity and impact of different object characteristics on the Pascal
VOC 2007 test set. The black dashed lines indicate overall APs. Some abbreviations:

XT=extra-tall/narrow; T=tall; M=medium; W=wide; XW =extra-wide.

only classification score is harmful to the final combination detection perfor-
mance.

Detection examples

Figure 4.13 shows some detection examples using the Pascal VOC 2007 test
set. We randomly selected images and tried to cover all categories in the
dataset. We used the trained combination method, which achieved 82.5%
mAP, to detect objects.

4.5.3 MS COCO object detection

In this section, we performed experiments on the COCO dataset. COCO is
a large-scale object detection dataset with 80 object categories. The training
dataset contains 118,287 images, including all training images and a subset
of valuation images (coco_2014_train and coco_2014_valminusminival). We
use COCO API (Lin and Dollar, 2016) to evaluate our results, which are mea-
sured by mAP over IoU in various thresholds. The model results are tested
on the mini-valuation test set (coco_2014_minival), which contains 5,000 im-
ages. Compared with Pascal VOC, objects in the COCO dataset tend to be
smaller, and the number of objects is higher. Thus, we fine-tuned the COCO
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(A) Proposal network (Faster R-CNN).
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(B) Two-stage detector using trained combination.

FIGURE 4.11: Distribution of top-ranked false positive (FP) types for three groups,
i.e., animals, furniture, and vehicles, from the Pascal VOC 2007 test set. The top
row shows the distribution of FPs on the proposal network results, and the bottom
row shows the distribution of FPs on the trained combination results. The FPs are
divided into four error types: poor localization (Loc), confusion with a similar cat-
egory (Sim), confusion with a dissimilar object category (Oth), and confusion with
the background (BG). False positives are sorted in descending order by confidence

score.

dataset with more iterations. We trained the proposal network with 1.2M it-
erations and a base learning rate of 0.0003. We reduced the learning rate by
a factor of 10 at 900,000 iterations with a momentum of 0.9. We fine-tuned
the classification network for 800,000 iterations with a base learning rate of
0.001.

The results are summarized in Table 4.7. The tested proposal networks
were Faster R-CNN with Resnet-101 and Inception-Resnet-V2 as baselines.
We set up the training parameters similar to the training with the Pascal
VOC 2007 dataset, but with the network initialized by pre-training on Im-
ageNet and the model trained with more iterations. From Table 4.7, the de-
tector (Faster R-CNN and our proposed two-stage model) performance on
the COCO dataset was much lower than for the Pascal VOC dataset. Because
the COCO dataset contains more object classes than Pascal VOC, the cate-
gories are no longer easily separated. For comparison, the average precision
of the two-stage network on COCO at IoU of 0.5 was about 60%, whereas the
average precision on Pascal VOC was over 80%. We compare our model with
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FIGURE 4.12: Experimental results for different high score threshold settings. The
results are evaluated on the Pascal VOC 2007 test set.

TABLE 4.7: COCO results on the coco_2014_minival set (bounding box AP). The
subscript number indicates the IoU value, and AP without a subscript number in-
dicates the AP (%) at IoU from 50% to 95%. Moreover, S, M, and L indicate small,

medium, and large objects, respectively.

Baseline AP AP50 AP75 APS APM APL
Mask R-CNN Resnet-101-FPN 37.5 60.6 39.9 17.7 41 55.4
Faster R-CNN Resnet-101 37.8 55.7 42.5 15.5 43.5 57.6
Faster R-CNN+Inception-V3+A Resnet-101 37.9 55.8 42.6 15.6 43.6 57.7
Faster R-CNN Inception-Resnet-V2 43 60.7 48.4 19.1 49.2 64.7
Faster R-CNN+Inception-V3+A Inception-Resnet-V2 43.1 60.8 48.6 19.2 49.2 64.7
Faster R-CNN+Inception-V3+T Inception-Resnet-V2 43.1 60.9 48.6 19.1 49.4 64.8
Faster R-CNN+Inception-V3+TC Inception-Resnet-V2 43 60.8 48.6 19.2 49.3 64.7

a state-of-the-art model, namely, Mask R-CNN (He et al., 2017). Note that the
Mask R-CNN model in Table 4.7 uses a better feature extractor, Resnet-101-
FPN (Lin et al., 2017) (which uses the Feature Pyramid Networks module
to detect objects at different scales), than the Resnet-101 feature extractor.
Moreover, Mask R-CNN uses the RoIAlign pooling layer, which has better
proposal and pooled feature alignment than the RoIPool layer used in the
two-stage proposal network. Again, the performance of the model with a
high-quality feature extractor (Inception-Resnet-V2) as the baseline performs
better than model with a lower quality feature extractor (Resnet-101). Al-
though the performance of the two-stage model depends on which proposal
network is used, we observe that the performance is slightly improved in all
settings. This indicates that the two-stage model still improves the proposal
network performance on the COCO dataset. We also observe that the perfor-
mance of the trained combination network almost equals the performance of
the post-combination network.
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Detection examples

Qualitative results are presented in Figure 4.14. Each image was randomly
sampled from the COCO dataset (coco_2014_minival). Compared to Pascal
VOC, the COCO dataset has more categories of interest and more objects in
an image, making it is more difficult to predict. Some images contain both
false positive and false negative detections.

4.6 Discussion and Conclusion

4.6.1 How to choose between the trained combination model
and the post-combination model

The differences between the models are the method of training the second
stage and the combination method. We propose several combination meth-
ods and observe that the mean combination ( f1) and the multiplication com-
bination ( f2) are approximately equal. The combination with the threshold
function ( f3) is better than f1 or f2 alone. However, the f3 function depends
on the high-score threshold and the boosting weight values, and thus is more
difficult to optimize. The trained combination is better than f3 on the Pascal
VOC dataset, but is almost equal with f3 on the COCO dataset because the
scores of the first stage affect the classification results of the second stage.
The trained combination only works with “high-accuracy” proposals. For
instance, at IoU = 0.5, the mAP on Pascal VOC, which is approximately 84%
is much higher than the mAP on COCO, which is about 60%. (For reasons of
comparison, we evaluated the Pascal VOC test set using the COCO evalua-
tion tool.).

In the trained combination model, the second stage uses the output scores
of the first stage as additional inputs. We conclude that it needs a reliable pro-
posal (high mAP) network to outperform the post-combination model. The
selection between the models depends on the specific dataset. As shown in
the experiment section, both proposed models are better than given proposal
networks. For a high-mAP proposal model (e.g., mAP > 75%) the trained
combination model should be chosen. For an insufficiently high-mAP model
(e.g., mAP < 60%), the post-combination model should be chosen. Other-
wise, further experiments may help us choose between the models.

4.6.2 How to choose the networks for the first and second
stage

Although the first stage has a strong impact on the final performance, choos-
ing the second stage is also important. We analyze the method for choosing
networks for the first and second stage of the proposed model.

First, following Huang et al., 2017, the baseline of the first stage is chosen
based on its classification performance. However, the SSD meta-architecture
appears to be less affected by its baseline’s classification accuracy, whereas it
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TABLE 4.8: Feature extractor properties used in the second stage. The top-1 and
top-5 accuracy (%) are the classification accuracies on ImageNet. The bounding box
mAP is evaluated on Pascal VOC 2007 using the same proposal network (Faster R-

CNN) and the same combination method ( f3).

Feature extractor Num. Params. Top-1 Acc. Top-5 Acc. mAP
Resnet-101 43M 76.4 92.9 81.9
Inception-V3 22M 78.0 95.2 82.4
Inception-Resnet-V2 54M 80.4 95.3 82.2

significantly affects the Faster R-CNN meta-architecture performance. Sec-
ond, because the second stage of the proposed model does not change the
proposal location, we should use strong-localization-type detectors, rather
than strong-classification-type detectors. For general object detection tasks,
Faster R-CNN is a considerably better choice than SSD.

Finally, the second stage is chosen by balancing performance and model
complexity. Table 4.8 shows the properties of the feature extractors used
in the second stage. We explore the relationship between the performance
(mAP) on Pascal VOC 2007 and image classification accuracies on ImageNet,
and the number of parameters of the feature extractors used to initialize the
second stage. Remarkably, although Inception-Resnet-V2 is the most accu-
rate model on ImageNet, the two-stage model using Inception-Resnet-V2
has a lower performance than the two-stage model using Inception-V3. The
Inception-V3 model also has lower complexity than the Inception-Resnet-V2
model. Thus, Inception-V3 appears to be the most appropriate model for use
in the second stage.

4.6.3 Effectiveness of the trained combination

Since we analyzed how to use the trained combination above, if the first stage
is “good” enough, the trained combination is better than other combination
methods. For this reason, we continue to explore the roles of the trained com-
bination module in the second stage as a classifier on the Pascal VOC 2007
dataset. We trained the Inception-V3 and Inception-V3+trained combination
module with the same training set and learning rate, and then evaluated both
models on the Pascal VOC 2007 test set. In Figure 4.15, we compare the train-
ing errors of the two classification models. The error drops more quickly
for the Inception-V3+trained combination network, which indicates that the
first-stage confidence helps speed up the training classification network pro-
cess.

4.6.4 Effectiveness for small object detection

Deep learning performance suffers in the case of small object detection. We
believe that this is because low-resolution feature maps are used to handle
small objects. The proposed model works well for some individual object
categories on the small scale.
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TABLE 4.9: Miss rate comparison with state-of-the-art pedestrian detection methods
on the Caltech test set for the detection of small objects.

Method Small objects (30-50) Far scale (20-30)
RPN+BF (Zhang et al., 2016) 79.83 100
CompACT-Deep (Cai, Saberian, and Vasconcelos, 2015) 75.86 100
SA-FastRCNN (Li et al., 2018) 74.49 100
MS-CNN (Cai et al., 2016) 70.34 97.23
F-DNN (Du et al., 2017) 44.86 77.47
F-DNN+SS (Du et al., 2017) 45.14 77.37
SmallDeep (Linh and Arai, 2017) 42.05 77.26
Proposed model 41.56 74.92

TABLE 4.10: Top improvement performance (AP) for small object detection. The
results are evaluated on COCO minival using Faster R-CNN as the proposal network

and Inception-V3 as the classification network.

Category Faster R-CNN (%) Faster R-CNN+Inception-V3+A (%) Gap (%)
suitcase 11.5 13.0 1.5
stop sign 23.5 25.2 1.6
carrot 10.3 12.0 1.7
fire hydrant 25.2 27.4 2.2
sheep 21.1 23.5 2.4
toilet 8.6 11.5 2.9

TABLE 4.11: Detection speed (s) and memory usage (GB) of the proposed models.
Note that the time and memory usage are comparable within same dataset (same

row).

Proposal network Classification network Total
Dataset model baseline time mem. baseline time mem. time mem.
Caltech ped. SSD VGG16 0.087 0.9 Inception-V1 0.014 0.9 0.10 1.8
Pascal VOC Faster R-CNN Resnet-101 0.106 2.2 Resnet-101 0.018 4.0 0.12 6.2
Pascal VOC Faster R-CNN Inception-Resnet-V2 0.602 10.6 Inception-V3 0.036 3.1 0.64 13.7
COCO Faster R-CNN Resnet-101 0.115 2.0 Inception-V3 0.036 3.1 0.15 5.1
COCO Faster R-CNN Inception-Resnet-V2 0.602 10.7 Inception-V3 0.036 3.1 0.64 13.8

For the Caltech pedestrian task, we consider the “small objects” setting
(or small pedestrian setting), because the miss rate increases drastically in the
range of 30 to 50 pixels for most pedestrian detectors (Dollar et al., 2012). The
proposed method achieves state-of-the-art performance for small pedestrian
detection, as shown in Table 4.9.

Likewise, in the COCO dataset, the largest gaps between the single model
detector and the proposed two-stage network are in small object detection.
The top six improvement categories for small object evaluation are listed in
Table 4.10.

4.6.5 Time and memory analysis

We trained and tested the proposed model on a machine with 32 GB of RAM
and a single graphical processing unit (GPU) TITAN X. The models were im-
plemented on a TensorFlow framework (Abadi et al., 2016). Because our pro-
posed method comprises two stages, the running time of the proposed model
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is the total running time of the two stages. Table 4.11 summarizes the speed
of the proposed model. The running time of the SSD model is faster than
that of Faster R-CNN. The running time of the trained combination method
is the same as that of the post-combination method with the same baseline.
Since the number of proposals is large, we perform non-maximum suppres-
sion (NMS) to ensure a maximum of 100 suppression proposals per image.
These proposals then are efficiently forwarded to the classification network
with batch sizes of 32. The second stage running time is less than 24% of
the total running time. Thus, most of the running time is expended on ob-
ject proposal extraction. Note that the slowest second-stage running time is
just 0.036 s per image, but the slowest proposed model (with running time is
0.64s) is still far from real-time (30 frames per second or better).

Since the proposed model requires two networks, the memory usage of
the model is the total memory usage of the proposal network and the classi-
fication network. Overall, the memory of each stage depends on the size of
the feature extractors and whether meta-architectures are used. In Table 4.11,
we also report the memory usage for each stage of the proposed model.

4.6.6 Conclusion

This chapter proposed a two-stage deep neural network detector for general
objects in images. The detector contains two networks that are respectively
used for object proposal extraction and object classification. Each network
contributes to the final detection by a combination function. Both the pro-
posal score and classification score are used to predict object appearances.
We studied several combination functions that combine two networks after
training and/or during second-stage training. The performance varied for
different combination functions and combination methods, and the overall
performance of the framework depended on the performance of the base-
line used. However, we showed that the performance of proposal networks
were improved, with some experiments showing state-of-the-art results. As
described in the experiment section, the mean combination (A) and the mul-
tiplication combination (M) were almost equal. Moreover, we proposed a
combination function that boosts proposal detection scores when two pre-
dicted classes (proposal class and classification class) are matched. The pro-
posed two-stage network detection proves the connection between the two
stage is essential. We also provided a new method (the trained combination
method) to aggregate the two networks during the training process by utiliz-
ing the first-stage output as additional input for the second stage. Unlike the
post-combination method, the trained combination method achieves better
performance when combined with a reliable proposal network. In the case
of Caltech pedestrian detection, the performance of the trained combination
network was worse than the post-combination network. This may be because
of low performance of the proposal network. Nevertheless, we introduced a
simple, fast and effective two-stage deep network to predict object appear-
ance in images. This chapter confirmed the connection between detection
stages is essential for better and high-level inference for object detection.
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classed, the bounding boxes and detection scores.
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FIGURE 4.14: Detection examples on COCO dataset. Each image was selected ran-
domly.
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Chapter 5

Feature extraction for Instance
Segmentation

In this chapter, we present an improvement to the second component in ob-
ject detection: the feature extractor described in Chapter 3 and Chapter 4.
Approaches to improving the performance of object detection include: strong
classifier (strong feature extractor), training sample selection, hard negative
mining and hard positive generation, multi-scale detection, context model-
ing, and segmentation. In this chapter, we focus on enriching the feature
extractor based on the pre-design baseline.

The goal of this chapter is to exploit the region pooling module to im-
prove the performance of object detection by segmentation (instance seg-
mentation). Detecting the object by segmentation introduces a new problem:
segmentation must be performed inside the predicted object locations in an
image. This requires a better feature map than object detection by bounding
box that guarantees better pixel-to-pixel alignment between input and out-
put. To segment the object inside an image or a bounding box, the network
needs to classify the image at pixel level. Thus, the segmentation task can be
modeled as predicting a binary mask for each object class in an image. Al-
though the size of objects in an image varies, the detector predicts the mask
of an object in a simpler form: a fixed-size mask. The fixed-size mask is then
bilinearly resized to the actual object bounding box size. Thus, mask pre-
diction requires a fixed-size pooling module to pool arbitrary regions from
feature maps to fixed-size feature maps.

Our inspiration is the RoIAlign pooling layer of Mask R-CNN (He et al.,
2017). RoIAlign is a quantization-free layer that preserves the spatial local-
izations by using a bilinear interpolation (Jaderberg, Simonyan, Zisserman,
et al., 2015) to compute the input features at four regular sample locations
at each continuous RoI bin, followed by max pooling. In this chapter, we
replace the RoIAlign layer with a small network module and ensemble the
extracted multi-scale features in a feature map.

Subsection 5.1 discusses multi-scale feature ensembling in deep neural
networks. Subsection 5.2 presents the RoI pooling layer, which can typically
be divided into two approaches: quantization and non-quantization of the
RoI boundaries or bins. This section also describes the effect of RoI pool-
ing layers on the object detection task and instance segmentation task. We
present a new subnetwork concept to replace the RoI pooling layer described
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RoI pooling
(RoIPool,RoIAlign,…)

RoI feature map 

RoI

FIGURE 5.1: RoI feature extraction. Fixed-size RoI feature maps are extracted from
an RoI of arbitrary size through an RoI pooling layer (e.g., RoIPool, RoIAlign).

in Section 5.3. In this subsection, we present the concrete design and train-
ing details of our proposed trainable submodule. Subsection 5.4 present our
experimental results on the COCO dataset. Our experiments show that us-
ing the subnetwork to extract rich and multi-scale RoI feature maps results
in good prediction performance on the object’s mask. We also compare the
proposed module with other instance segmentation methods and study the
effect of the new module on the overall network performance. We present
the advantages of our subnetwork, including the training convergence of the
detection network. We summarize our conclusions in Subsection 5.5.

5.1 Multi-scale feature ensembling

In a deep network, combining multi-scale features can improve performance.
Some methods use segmentation tasks (including semantic segmentation and
instance segmentation) by computing the partial scores for each class over
multiple scales, such as FCN (Long, Shelhamer, and Darrell, 2015) and Hy-
percolumns (Hariharan et al., 2015). Numerous methods use a similar strat-
egy for object detection tasks, such as FPN (Lin et al., 2017) and HyperNet
(Kong et al., 2016).

Unlike the above methods, the proposed method is based on the con-
cept of incorporating multi-scale features and precisely maintaining the RoI
alignment. We replace the RoIAlign layer in the Mask R-CNN method with
a subnetwork that ensembles the features within each RoI at multiple scales.
This approach enables us to train the RoI pooling module and achieve better
RoI feature representation.
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FIGURE 5.2: Faster R-CNN (left) and Mask R-CNN (right). The main difference
between these two methods is the number of outputs. Bbox refers to bounding box.

5.2 RoI pooling layer

5.2.1 RoI pooling layer in the detection network

Current state-of-the-art detection networks, such as Mask R-CNN (He et al.,
2017), Faster R-CNN (Ren et al., 2015), and Fast R-CNN (Girshick, 2015),
use a two-stage design for networks. These methods use a precomputation
method (e.g., SelectiveSearch (Uijlings et al., 2013)) or deep networks to ex-
tract the set of object region proposals. These proposal boxes are used to
extract features within the boxes ( called RoI feature maps) by an RoI pool-
ing layer, which are then fed to the next stage (CNN). Figure 5.1 illustrates
the concept of using an RoI pooling layer to output fixed-size feature maps.
The choice of the RoI pooling layer depends on the detection task. For ex-
ample, the RoIPool (Girshick, 2015) layer is widely used in object detection
(predicting boxes and classes). RoIAlign (He et al., 2017) is an improved
version of RoIPool and is used for pixel-prediction tasks. The quality of de-
tection depends on the quality of the pooled RoI feature maps. The RoIAlign
layer removes quantizations of RoIPool. For example, it uses x/16 instead of
[x/16] to perform pooling from coordinate x of RoI to the discrete granularity
of the feature map or in other word, a quantization-free layer.

A natural question to be asked is whether a subnetwork module, which
replaces the RoI pooling layer, can achieve a similar quality. In the present
study, we propose a module that replaces the RoI pooling layer in Figure 5.1
with a subnetwork. We replace the pre-computed RoI with a deep network
called the region proposal network (RPN), which is based on the Faster R-
CNN method. However, in the instance segmentation task, the subnetwork
must ensure pixel-to-pixel alignment between the RoI and the extracted fea-
tures. The proposed subnetwork can be considered a trainable version of the
RoI pooling layer.
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5.2.2 From object detection to instance segmentation

We consider the instance segmentation as an extension of object detection
by changing the number of outputs of the network. We follow the concept
of the Mask R-CNN method, which extends the Faster R-CNN method. Al-
though the Mask R-CNN method is used for a different task (instance seg-
mentation), this method has a strong connection with Faster R-CNN. Figure
5.2 shows the differences between these two methods. The outputs of each
model used to define the task of interest are referred to as network heads.
Mask R-CNN extends the Faster R-CNN by adding a mask branch to predict
an object mask in parallel with the existing bounding box prediction branch
and the class prediction branch. The mask branch predicts a fixed size mask
(m×m) for every class, resulting in N binary masks, where N is the number
of classes. Mask R-CNN is an effective framework for instance segmentation.
The proposed method is based on the Mask R-CNN method, but the quality
of segmentation is improved.

5.2.3 RoI feature extraction

Proposal-based methods such as Faster R-CNN and Mask R-CNN are in-
corporated into a pooling method in order to pool the features within each
RoI into fixed-size features. The first method is RoIPool (Girshick, 2015),
which converts a feature with size h× w into a small feature map with size
H ×W (e.g., 7 × 7). RoIPool operates by max-pooling an H ×W grid of
sub-windows of approximate size h/H × w/W. RoIPool is a special case of
spatial pyramid pooling in SPPNet (He et al., 2014). Although RoIPool works
well for the object detection task, it appears to decrease the pixel-level predic-
tion performance because the RoI and the extracted features are misaligned.
To address this problem, Mask R-CNN introduces the RoIAlign pooling layer
to replace the RoIPool layer. RoIAlign is a “quantization-free” layer that pre-
serves the spatial localizations by using a bilinear interpolation to compute
the input features at four regular sample locations at each continuous RoI
bin followed by max pooling. The extracted features have better-preserved
spatial correspondence than RoIPool.

5.3 Multi-scale subnetwork for RoI pooling

As described in the Subsection 5.2.2, our overall network contains two com-
ponents. The first component (RPN) extracts the set of network propos-
als, and the second stage uses Fast R-CNN to perform object classification,
bounding box regression, and mask prediction from features that are ex-
tracted from each candidate box through a subnetwork.

5.3.1 Subnetwork design

Figure 5.3 shows the proposed model for the mask prediction branch. The
subnetwork contains three branches, and at each branch, the features in the
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prediction.

proposed RoI are cropped into different scales. To preserve the alignment
between the RoI and the extracted features in the corresponding RoI, we use
the “crop_and_resize” function in TensorFlow (Abadi et al., 2016) to crop and
bilinearly resize the input images to a fixed size. We use a 1× 1 convolution
layer after each “crop_and_resize” operation to maintain the number of out-
puts as 256. Feature maps are then down-sampled to the smallest fixed-size
output (e.g., 14 × 14 ) by the average-pooling layer, and concatenated. Fi-
nally, we use a convolution layer to reduce the number of outputs to 256,
and we use the convolution layer as a prediction mask, as in Mask R-CNN.
We analyze two properties of the proposed subnetwork:

• Precise RoI and pooled RoI features alignment, and

• Multi-scale feature representation

First, the goal of the subnetwork is to extract small feature maps from
each RoI to fixed-size features in the same manner as RoIPool and RoIAlign.
Moreover, the “crop_and_resize” function and the pooling layer maintain
the alignment between the RoI and the output features of each subnetwork
branch. According to He et al., 2017, this property is crucial for the in-
stance segmentation task. Second, the proposed three-level sub-branch cov-
ers multi-scale RoI features. Ensembling features across multiple scales has
proven beneficial in computer vision tasks.

5.3.2 End-to-end training

We adopt end-to-end joint training of the RPN and network heads. For
training, the multi-task loss function is a combination of three losses: the
cross-entropy classification loss (Lcls), the box regression loss (Lbox), and the
mask loss (Lmask). To predict the class and box regression, the class loss
Lcls(p, u) = −log(pu) is the cross-entropy loss for the true class u. The second
loss Lbox = Lbox(t, t∗) is defined over a tuple of true bounding-box regression
targets t and a predicted tuple t∗, as in Fast R-CNN. The final loss Lmask is
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defined over an N ×m×m-dimensional output for each RoI, where N is the
number of classes. Here, the k-th Lmask is the average binary cross-entropy
loss and is defined as

Lmask = −
1

m2 ∑
1≤i,j≤m

(
yi,jlogŷk

i,j + (1− yi,j)log(1− ŷk
i,j)
)

(5.1)

where yi,j is the label of cell (i, j) and ŷk
i,j is the predicted value of cell (i, j).

The mask branch output is a pixel-wise binary classifier, because it outputs
one mask for each class, and there is no competition between classes. The
overall training loss is defined as

L = Lcls + λ[u ≥ 1]Lbox + Lmask (5.2)

where [u ≥ 1] is equal to 1 when u ≥ 1, and 0 otherwise. In the experiments,
we set the balance loss weight λ to 1.

5.3.3 Training details

We initialize the subnetwork convolution layers with MSRA (He et al., 2015)
and constant initialization for biases. Through experiments, we found that
normalizing the output of the convolutional layers by using a batch normal-
ization (Ioffe and Szegedy, 2015) layer after convolution boosts the perfor-
mance. The last convolutional layer after concatenation does not need a
batch normalization layer. We adjust the hyper-parameters from Mask R-
CNN during training. The image is resized to a shorter edge of 800 pixels,
and each GPU has a batch size of one image. For data augmentation and to
prevent over-fitting, we apply random flipping to the training dataset. We
train the dataset in a 2-GPU system with a total of 720k iterations. The base
learning rate is 0.0025 (the learning rate is reduced by a factor of 10 after 480k
iterations and 640k iterations). The weight decay is 10−4 and the momentum
is 0.9. An RoI is considered to be positive if it has an IoU with a ground-truth
box of at least 0.5. We maintain the ratio of positive to negative proposal RoI
as 1 : 3. The resolutions of RoI features for Resnet-50 and Resnet-101 (He
et al., 2016) are 14× 14 and 28× 28, respectively.

5.4 Experimental results

5.4.1 Dataset setup

In this section, we present the experimental results on the COCO dataset as
described in Subsection 4.5.3. Here, we evaluate the instance segmentation
task. Each object in the image is annotated with a bounding box and a binary
mask inside the bounding box. We used the COCO API (Lin and Dollar,
2016) to evaluate our results, which are measured by average precision (AP
or mask AP) over IoU in various thresholds and object scales. We report the
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AP in the 5,000-image valuation set (the minival set). The IoU threshold and
the object scales are shown in Table 5.1

TABLE 5.1: COCO dataset instance segmentation settings.

Evaluation terms IoU (%) Object size: A
AP 50-95 All

AP50 50 All
AP75 75 All
APS 50-95 A < 32× 32
APM 50-95 32× 32 < A < 96× 96
APL 50-95 96× 96 < A

5.4.2 Instance segmentation results

We tested our proposed model with different network settings. In order to
demonstrate the effect of the proposed subnetwork, we used different base-
lines for feature extraction over an input image. We compare the results of the
Mask R-CNN method, which uses the RoIAlign pooling layer, and the pro-
posed method, which uses the subnetwork for RoI feature extraction. To en-
sure a faithful comparison, we attempt to train the methods under the same
conditions, including the baseline, weight initialization, number of iterations,
and system configuration. We also explored the effect of the proposed multi-
scale feature pooling under the feature pyramids baseline (e.g., the feature
pyramid network (FPN) Lin et al., 2017). In our experiments, we used a com-
puter with Intel Core i7-6800K CPU (3.40GHz), 64GB of RAM and a NVIDIA
TITAN X GPU.

TABLE 5.2: Instance segmentation results (%) for the Resnet-50 baseline.

Model AP AP50 AP75 APS APM APL
Mask R-CNN 31.4 52.8 33 12.1 34.5 49.6
Proposed model 31.8 53.5 34.1 12.7 34.8 50.8

The first experiment is performed with Resnet-50, which has a depth of
50 layers. The features are extracted from the final convolutional layer of the
fourth stage. In this experimental setting, we do not use the feature pyramid
extraction for baseline features. The results are shown in Table 5.2. Overall,
the proposed model APs are improved for all IoU threshold and object size
settings. At a high value of IoU (75%), a gap in AP of 1.1% indicates that the
proposed model is beneficial under good conditions.

TABLE 5.3: Instance segmentation results (%) for the Resnet-101 baseline.

Model AP AP50 AP75 APS APM APL
Mask R-CNN 37.5 60.6 39.9 17.7 41.0 55.4
Proposed model 37.7 60.7 40.2 17.8 40.9 55.6
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FIGURE 5.4: Average precision (AP) evolution during training of Mask R-CNN vs.
the proposed model using the ResNet-101-FPN baseline. The results are evaluated

in the COCO minival set.

The second experiment is performed with a higher quality feature extrac-
tor, i.e., Resnet-101 with FPN design. The FPN is used to augment a feedfor-
ward network (e.g., Resnet-101) with a top-down pathway and lateral con-
nections. The FPN extracts the feature pyramid from a single-resolution in-
put image. The extracted RoI features from different pyramid levels can be
used for box detection and mask prediction. The overall AP is better than
that of the model using the Resnet-50 baseline, which shows the relationship
between the instance segmentation performance and the classification per-
formance of the baseline on ImageNet (Russakovsky et al., 2015). Table 5.3
details the experimental results. The obtained results are better than those
of Mask R-CNN at various settings. For IoUs ranging from 0.5 to 0.95, we
obtained a mean AP of 37.7%, which is 0.2% higher than that of the Mask
R-CNN model. However, the gaps are smaller than those in the first exper-
iment. We believe that since the feature extractor (Resnet-101-FPN) outputs
pyramid features, the effect of the proposed multi-scale subnetwork is not
strong, as in the first experiment, which used a non-pyramid feature extrac-
tor.

Figure 5.4 shows the AP during training of Mask R-CNN and the pro-
posed model. We trained both models under the same configuration and
learning rate. The curve indicates the benefit of using the proposed subnet-
work to replace the RoIAlign layer of the Mask R-CNN model. The proposed
model increases the AP quicker than Mask R-CNN, especially at early iter-
ations, because the proposed model embeds the RoI features at multi-scale,
and thus outputs more robust features for mask prediction.
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TABLE 5.4: Running time (s) and memory usage (GB) of the proposed model com-
pared with Mask R-CNN.

Model Baseline Test time Memory
Mask R-CNN ResNet-50 0.163 8.5
Proposed model ResNet-50 0.195 9.3
Mask R-CNN ResNet-101-FPN 0.251 6.6
Proposed Model ResNet-101-FPN 0.260 7.0

5.4.3 Complexity

We report the model running time of the proposed method in Table 5.4. Since
the proposed subnetwork uses more parameters than the RoIAlign layer, the
model running time is slower and uses more memory than Mask R-CNN.
However, an increased time of less than approximately 20% and an increased
memory usage of approximately 6% are reasonable.

5.4.4 Instance segmentation examples

We show some results in Figure 5.5. We used Resnet-101-FPN as the baseline
for feature extraction. The proposed method achieves good results under
difficult conditions.

5.5 Discussions and Conclusions

In experiments, we applied the proposed network for two baselines (with
and without pyramid feature extraction). Although the proposed model out-
performs Mask R-CNN using the same baseline, the gaps in the first model
(using ResNet-50 as a baseline) are larger than those in the second model (us-
ing ResNet-101-FPN as a baseline). This is because ResNet-101-FPN already
performs mask prediction in multi-level layers. The proposed multi-scale
RoI pooling subnetwork effectively augments pooled feature maps at mul-
tiple feature resolutions. Thus, the proposed model greatly improves when
using a non-pyramid feature extractor as a baseline.

Another problem with the proposed subnetwork is the choice of hyper-
parameters, such as the number of sub-branches, the output size of cropped
RoI features, and the number of outputs for each convolutional layer. Due
to the limited GPU memory, we only use three sub-branches at three sizes
(14× 14, 28× 28 and 56× 56).

In this section, we present the potential for applying the proposed module
for the two-stage object detection network described in Chapter 4.

5.5.1 Feature extractor for bounding box object detection

Here, we present the RoI feature extraction module that is applied for the
instance segmentation task. In general, the RoIPool layer, the RoIAlign layer,
and our proposed subnetwork extract the same dimensional output. These
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FIGURE 5.5: Detection examples on the COCO dataset based on Resnet-101-FPN.
Each image was randomly selected. The method achieves mask AP of 37.7%. The

masks are presented in color, bounding box, class and confidence score.

layers/subnetwork can be replaced with each other. The proposed module
can be used for object detection by the bounding box.
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TABLE 5.5: Object detection by bounding box on the COCO minival set. All models
use same baseline ResNeXt-101-FPN.

Model Baseline AP AP50 AP75 APS APM APL
Faster R-CNN ResNeXt-101-FPN 41.5 63.8 44.9 24.8 45.4 53.5
Proposed model ResNeXt-101-FPN 42.3 64.0 46.4 25.5 46.4 54.4

Table 5.5 shows the performance of our proposed model using the bound-
ing box only on the COCO minival set. We used the ResNeXt-101-FPN (Xie et
al., 2017) feature extractor for Faster R-CNN and the proposed model, which
used the RoIAlign pooling layer. To obtain this result, we trained our pro-
posed model with the mask branch and ignored the mask prediction at the
inference time. The performance (bounding box AP) increased by 0.8%, in-
dicating the efficiency of using the subnetwork module. We also observe the
performance improvement for all settings.

5.5.2 Conclusions

We proposed a multi-scale, subnetwork RoI pooling module for the instance
segmentation task. Although the rest of the detection network follows the
design of Mask R-CNN (He et al., 2017), we presented an alternative design
for better RoI feature pooling. The subnetwork module not only maintains
the pixel-to-pixel alignment between input proposal regions, which is critical
for segmentation, but also encodes multi-scale features for better mask pre-
diction. The subnetwork allows end-to-end training with the whole network.

We studied the effectiveness of the new module with different baseline
networks. We conclude that multi-scale feature embedding improves the
performance of instance segmentation. The proposed model improves the
performance of a non-pyramid feature extractor as a baseline. However, in
our design, it is unclear how to specify the optimal number of multi-scale
pooling branches or the size of the pooled features.

We also analyzed the effect of the proposed model on the speed of the
training process. In our experiment, with the same baseline settings, the new
model improved the AP faster than Mask R-CNN, i.e., the model required
less time to converge.

Further, for bounding box object detection, the proposed model with sub-
network outperformed Faster R-CNN using the same baseline and RoIAlign
for RoI feature extraction. We think one reason is the benefit of multi-task
learning.
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Chapter 6

Conclusions

The present thesis described deep learning frameworks for the object detec-
tion problem in images. Our proposed approach builds in concepts of image
recognition and feature extraction based on deep learning to provide an ef-
ficient method for object detection. Our main contribution was to propose
a robust framework for object detection tasks by reducing misclassification.
We introduced several combination methods and proved the advantages of
a two-stage model for object detection. The trained combination method im-
proved the classification performance and overall detection performance of
the model. We also discussed how to choose an appropriate first stage, sec-
ond stage, and combination method in order to construct a strong two-stage
detector for a specific application. We showed that the use of two networks
gives state-of-the-art performance for object detection.

6.1 Key contributions

The thesis has several contributions as follows:

• Two-stage network detector. Our first contribution is the proposed
two-stage network based on deep learning to improve object detection
performance. The hierarchical network aims to reduce misclassification
by processing the image through a proposal network and a classifica-
tion network. The testing is simple because we do not use enhanced
methods such as multi-crop, horizontal flipping, or multi-scale dur-
ing testing. The overall conclusion is that the intensive connection and
high-level inference detection improve detection quality by eliminating
the detection errors of the given object detector.

• Combination functions between two networks. We combined two
network detection results by providing connection functions between
two networks. In this thesis, we discussed how to combine two net-
works by two types of combinations: post-combination and trained
combination. The detection performance of a given deep-learning-based
detector (the proposal network) can be significantly improved if the
outputs of that network are re-classified. We contributed simple post-
combination functions to combine two networks and re-score each de-
tection by a secondary classifier. Moreover, the trained combination
that utilizes the output detection scores as additional inputs for the
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second-stage classifier improves the overall performance of the detec-
tion network. The processing time of the proposed framework is rea-
sonable, and our experiments show that the framework achieves good
performance for object detection under difficult conditions, such as small-
scale objects.

• New feature extraction for instance segmentation. To improve net-
work performance, we introduced a new feature extractor design. The
new network aims to improve the performance of object detection by
segmentation. We built a rich and multi-scale feature extractor from the
proposed Region of Interest to a fixed-size feature map. The new de-
sign allows multi-scale feature to be encoded based on a deep learning
subnetwork. Our design can be trained while simultaneously maintain-
ing the pixel-to-pixel alignment for object location and mask prediction.
Experimental results show the potential of applying the subnetwork for
proposal-based detection networks.

6.2 Limitations of the method

Our proposed framework has a number of limitations, both intrinsic and
other issues, which we plan to investigate in the near future. In this sec-
tion, we describe the intrinsic limitations, and in the next section, we discuss
future work.

• Time and space complexity. Although the proposed models outper-
formed conventional proposal detection networks and performed well
in detecting small objects, one limitation of the proposed method is time
and space complexity. As per Subsection 4.6.5, the proposed model
consists of two deep learning networks, so the running time of the
overall detector is slower than single detectors. The two-stage net-
work requires training the first stage to extract the set of proposal de-
tections. The second stage uses the proposals for training classifiers.
Thus, the two-stage needs more time for training and testing. More-
over, the memory usage of the proposed framework is higher than that
for single-stage networks.

• Model complexity. Increasing the model capacity affects not only the
model running time and memory usage, but also the training process.
For instance, increasing the model complexity raises the probability of
over-fitting and unstable training. In other words, it is more difficult
to optimize two stages than a single stage . The classification network
has a relatively large number of parameters to be optimized. The other
problem is that the number of training samples for the classification
network is relatively small because the training samples are focused
on the object only. This drawback leads our proposed model to not be
suitable for small-size datasets.
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6.3 Future work

Joint training two network stages

The proposed two-stage network can be considered as two learning tasks:
object detection and object classification. For the training process, we trained
two networks separately and combined the two stages at the end of the train-
ing. There are some benefits to training two stages at once (joint training)
or end-to-end training (Ruder, 2017). Joint training aims to improve detec-
tion and classification simultaneously by combining the common knowledge
from both tasks. Moreover, with joint training, we can reduce the complexity
of the training pipeline, making the detector easier to test and deploy.

Extend the trained combination

In the trained combination model in Subsection 4.4.2, we used the scores of
the proposal network as additional input for the classification network, How-
ever, there are additional first-stage outputs that could be used in addition to
the confidence scores. For example, the box sizes can be used as input for
the second stage. The box size can be used to predict which proposal model
will perform detection better, improving the second-stage classification per-
formance.

Model running time and memory reduction

Generally, the more accurate the model is, the more time and space complex-
ities are required. Huang et al. extensively surveyed the trade-off between
accuracy and speed for modern convolutional object detectors (Huang et al.,
2017). However, we think the requirement for model deployment in devices
with low memory resources is critical. The constraints of hardware in vari-
ous small platforms (e.g., mobile, robotic) are also a problem for deep learn-
ing applications. With regard to reducing model running time and memory
usage, there are several interesting approaches for model compression and
acceleration for deep neural networks with minimal loss of accuracy, such as
quantization and binarization (Gong et al., 2014), and pruning and sharing
(Srinivas and Babu, 2015; Han et al., 2015; He, Zhang, and Sun, 2017). It is
worth investigating the effect of model compression on our detection model.
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Appendix A

Image object detection and
evaluation

We review some common metrics for the object detection problem that are
used in this thesis. The evaluation of object detection, which requires the
evaluation of object class and location prediction, can actually be reduced
to the evaluation of the classification problem. A predicted bounding box
is matched with the ground-truth to form a true positive or false positive
detection. Most object detection evaluations define a fixed threshold of IoU
(e.g., threshold = 0.5) to match the predicted box. Likewise, we use the def-
inition of the Pascal object detection challenge in Everingham et al., 2010. A
detection is represented by the box coordinates Bdt = {x1, y1, x2, y2} and the
detection score. The detection is then matched with the ground-truth box
Bgt = {x∗1 , y∗1 , x∗2 , y∗2}. A detection is considered true if the overlap between
the predicted region and ground-truth region

IoU =
area(Bdt ∩ Bgt)

area(Bdt ∪ Bgt)
(A.1)

exceed 0.5.
There is the possibility that one ground-truth matches with multiple true

detections. In this case, only the detection with the highest IoU value is con-
sidered a true positive detection; the remaining detections are considered
false positive detections. Table A.1 summarizes the error types.

TABLE A.1: Table of error types.

Detector
Object Other

Ground-truth Object True Positive
TP

False Negative
FN

Other False Positive
FP

True Negative
TN

Non-maximum suppression is a method used to reduce number of mul-
tiple detections as depicted in Figure A.1. Note that the evaluation threshold
is not necessarily equal to the threshold of non-maximum suppression post-
processing.
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For multiple-class evaluation, the evaluator processes each class sepa-
rately to calculate the metric for each class. The final performance of the
detector is the average value of the performance for each class.

In this appendix, we review metrics commonly used in object detection:
the average precision and the miss rate. These metrics are used to evaluate
the proposed model in this thesis and to compare the proposed model with
other methods.

A.1 Object detection

A.1.1 Ground-truth

In object detection, ground-truth represents the desired output of an de-
tector on an input image. It is represented by the box coordinates Bgt =
{x1, y1, x2, y2} and the object class.

A.1.2 Confident level and score

The confident level (confident, confident score) and score are used inter-
changeably in this thesis and they are same calculation. However, they are
different in the context of object detection. Confident level is the probabil-
ity of predicted object (e.g., in the Equation B.2), confident level is a number
between 0 and 1. Score is the output of detector that is used to rank the de-
tections. Score can be any value.

A.1.3 Non-maximum suppression (NMS) algorithm

In object detection, the detector typically produces multiple detections with
high scores close to the ground-truth location. NMS is used to make sure
that a particular predicted object is identified only once by eliminating multi-
detection. Figure A.1 shows the pseudo code for NMS algorithm.

A.2 Precision/Recall and ROC

Precision indicates how often the prediction is correct. Recall indicates the
percent of correctly detected positive instances over the total amount of rele-
vant instances. These are respectively defined as

precision =
TP

TP + FP
(A.2)

and
recall =

TP
TP + FN

(A.3)

A perfect precision score of 1.0 means that every sample is a true positive,
but does not indicate whether all positive samples were detected. A perfect
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Input: B = {b1, ..., bN},S = {s1, ..., sN}, t
B is the list of initial detection boxes
S contains corresponding detection scores
t is the NMS threshold
begin
D ← {}
while B 6= empty do

m← argmax(S)
M← bm
D ← D ∪M
B ← B −M
for bi in B do

if IoU(M, bi) ≥ t then
B ← B − bi
S ← S − si

end
end

end
return D,S

end

FIGURE A.1: NMS algorithms.

recall score of 1.0 means that all positive samples were detected, but does
not tell us how many false positive samples were also detected. There is
an inverse relationship between precision and recall. Usually, precision and
recall are not discussed in isolation. Rather, they are viewed together as a
“precision-recall tradeoff”. Depending on the requirements of the specific
task, the application may require a high-precision or high-recall detector. The
tradeoff between precision and recall can be observed using the precision-
recall curve, which plot precision versus recall.

On the other hand, the Receiver Operating Characteristic (ROC) curve
represents the relationship between sensitivity (recall or True Positive Rate
(TPR)) and False Positive Rate (FPR).

FPR =
FP

FP + TN
(A.4)

and
TPR =

TP
TP + FN

(A.5)

Thus, we have two curves to estimate the performance of a detector. How-
ever, the two curves have different uses. In particular, if the positive samples
are very rare compared to the negative samples or if true negative samples
are not very valuable to the problem, the Precision/Recall curve is more ap-
propriate. Otherwise, the ROC curve is preferred.
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A.3 Area Under the Curve (AUC)

When summarizing the model performance, the Area Under the Curve (AUC)
is used to represent the tradeoff between two values. That is, the AUC rep-
resents the entire curve by a single reference value. For example, the high
AUC of the Precision/Recall curve represents both high precision and high
recall. Figure A.2 shows an example of AUC used to summarize the Preci-
sion/Recall tradeoff1.
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FIGURE A.2: AUC of Precision/Recall curve, namely, average precision (AP).

It is also common to calculate the AUC at several x-axis (e.g., recall) lev-
els. For example, the Pascal VOC challenge (Everingham et al., 2010) mea-
sures the average precision at a set of eleven equally spaced recall levels
[0, 0.1, ..., 1]. The Caltech pedestrian detection (Dollar et al., 2012) calculates
the miss rate at nine FPPI rates in the range from 10−2 to 100.

A.4 Average Precision and Miss Rate

We used two metrics to evaluate the performance of object detection methods
in Section 4.5 and Section 5.4. The definition of miss rate is

MissRate =
FN

FN + TP
(A.6)

1http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
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In general, the miss rate (or log-average miss rate) and average precision
are similar. AP considers the precision in relation to the recall value. Some
benchmarks, such as Pascal VOC 2007 and COCO (Lin et al., 2014), use AP as
the metric for performance measurement. It is equivalent to the AUC under
the Precision/Recall curve as discussed in appendix Section A.3. Note that
the AUC of the ROC curve was also used in the Pascal VOC 2006 (Evering-
ham et al., 2006), but it was later replaced by the AUC of the Precision/Recall
curve to improve the sensitivity of the metric. The miss rate represents the
relationship between miss rate and FPPI. Although the shapes of the two
curves are generally similar, the smaller the value of miss rate, the better the
detector.
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Appendix B

Deep learning classifier

In this appendix, we review two common classifiers used in CNN. Although
the proposed method often uses the softmax classifier only, it is good practice
to consider training with both classifiers.

B.1 Softmax classifier

Deep learning classifier often uses the softmax classifier at the last layer of
the network. In many deep learning frameworks (e.g., Caffe), the softmax
classifier is a layer that is attached after the fully-connected layer. The soft-
max classifier gives normalized class probabilities as output and also has a
probabilistic interpretation. The softmax layer outputs a 1× K output vector
where K is the number of classes. The softmax layer has K nodes denoted
by pi where i = 1, ..., K, pi is a discrete probability distribution. We denote
a correct label yi given the image xi. Let h be the activation of the last fully-
connected layer, W be the weight that connects the softmax layer and the
fully-connected layer, and the input of the softmax layer be a vector a where

ai = ∑
k

hkWki (B.1)

The probability

pi = P(yi|xi; W) =
exp(ai)

∑K
j exp(aj)

(B.2)

can be interpreted as the normalized probability of the correct label yi given
the image xi and parameterized by W.

To predict the class î, the classifier uses the following formula:

î = argmax
i

pi

= argmax
i

ai
(B.3)
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B.2 Support Vector Machine (SVM) classifier

Support vector machine (SVM) is a supervised learning model that is widely
used for classification and regression analysis.

min
γ,w,b

1
2
‖w‖2 + C

m

∑
i=1

ξi

s.t. y(i)(wTx(i) + b) ≥ 1− ξi, i = 1, ..., m
ξi ≥ 0, i = 1, ..., m

(B.4)

where ξi is a slow down variable that penalizes data points that violate the
margin requirements. The parameter C is used to control the relative weight-
ing between the dual goals of making the ‖w‖2 small and of ensuring that
most examples have a functional margin of at least 1 (Ng, 2000). To use deep
learning with SVM, Tang, 2013 used a differentiable variation of SVM known
as L2-SVM, which minimizes the square hinge loss

min
w

1
2
‖w‖2 + C

m

∑
i=1

max(1− wTxntn, 0)2 (B.5)

where tn ∈ {−1,+1}. To predict the class label of test data x

argmax
t

(wtx)t (B.6)

A common approach to using SVM for multiple-class classification is to use
a combination of several binary SVM classifiers. For multiple-class SVM, we
can extend the binary SVM classifier to distinguish between either:

• One of the labels and the rest (one-versus-all) using a winner-takes-all
strategy, or

• Every pair of classes (one-versus-one) implemented by max-wins vot-
ing.

Finally, the class and score prediction are the same as the prediction by the
softmax classifier as in Section B.3.
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Appendix C

Training box regression

The object detector must predict both the classes and the object locations
(bounding boxes). The predicted object’s bounding box is represented as four
numbers {x1, y1, x2, y2}, which specify the top-left and bottom-right of the
bounding box. Another representation of the bounding box is {x1, y1, w, h},
which specifies the top-left and the size of the bounding box (width and
height). We also use the notation {xc, yc, w, h} where xc, yc are the coordi-
nates of the center of the predicted bounding box. The detector predicts the
bounding boxes based on the features extracted by the CNN. The detector
uses the “raw” data for training. Another approach to address this problem
is box encoding, by which the predicted bounding box can be calculated by
two inputs: the associate ground-truth box and the box offset.

In this appendix, we review several box encoding methods that have been
used in recent deep-learning-based object detectors.

C.1 Box encoding

For each proposal box p (anchor box, default box), there is a best match-
ing ground-truth box g (if at least one matching ground-truth box exists).
The proposal box p is labeled positive and p is encoded with respect to the
ground-truth box. The detector learns the transform function that maps a
proposal box p to a ground-truth box g.

We call these transform functions dx(p), dy(p), dw(p), and dh(p). For ex-
ample, in the R-CNN method (Girshick et al., 2014), the two first functions
specify a scale-invariant translation of the center of p’s bounding box, whereas
the second two specify log-space translations of the width and height of p’s
bounding box. The bounding box is predicted by applying the transforma-
tion

ĝx = pwdx(p) + px (C.1)

ĝy = phdy(p) + py (C.2)

ĝw = pwexp(dw(p)) (C.3)

ĝh = phexp(dh(p)) (C.4)

Each function d∗(p) (where ∗ is one of x, y, w, h) can be modeled as a linear
function of CNN features, denoted φ(p). Thus, we have d∗(p) = wT

∗φ(p),
where wT

∗ are parameters needed for training. The box loss function can be
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modeled as
Lbox(t∗ − wT

∗φ(p)) (C.5)

The term t in equation C.5 is called the “bounding box target” or “encoded
box”. For instance, the encoded box of the R-CNN method is defined as

tx = (gx − px)/pw (C.6)

ty = (gy − py)/ph (C.7)

tw = log(gw/pw) (C.8)

th = log(gh/ph) (C.9)

Table C.1

TABLE C.1: Box encoding methods.

Method Encoded box Location loss functions
Szegedy et al., 2014 [x1, y1, x2, y2] L2
Faster R-CNN [(x− xp)/wa, (y− yp)/hp, log(w/wp), log(h/hp)] SmoothL1
Redmon et al., 2016 [x1, y1,

√
w,
√

h] L2

tx = (x− xp)/
√

wp ∗ hp

ty = (y− yp)/
√

wp ∗ hp

tw = log(
√

w ∗ h/
√

wp ∗ hp)

th = log(
√

w ∗ h/
√

wp ∗ hp)

(C.10)

Other encoding is shown in equation C.10. This box encoding is used in the
Faster R-CNN method to detect objects which tend to be square (e.g., faces),
and when the input images aspect ratios are preserved via resizing.

C.2 Training objective of the box regression

We review two loss functions used to train the bounding box regression.
From equation C.5, total regression loss is defined as

Lbox = ∑
i∈{x,y,w,h}

`(ti − wT
i φ(p)) (C.11)

where ` is defined as robust L1 (smooth L1)or L2 loss functions, where

SmoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(C.12)
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